- PII
- 10.31857/S0044457X25040052-1
- DOI
- 10.31857/S0044457X25040052
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 70 / Issue number 4
- Pages
- 516-526
- Abstract
- The article is devoted to the synthesis, determination of structural features, electrical conductivity and pigment characteristics of cation-deficient scheelite-type CaBiФMoVO solid solutions. Complex oxides were studied with X-ray diffraction and Raman spectroscopy. The concentration ranges of existence of different types and distortion of structure were discussed via the element ordering in 4 sublattice. The total electrical conductivity of the compounds was studied by impedance spectroscopy in the temperature range of 400–650°C. Arrhenius plots of electrical conductivity on the inverse temperature were constructed and analyzed. According to the diffuse light scattering data of powders, functions of color coordinates of the solid solutions were calculated.
- Keywords
- шеелит CaMoO KP-спектроскопия цветовые координаты электропроводность
- Date of publication
- 16.01.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 4
References
- 1. Гусева А. Ф., Пестерева Н. Н. // Журн. неорган. химии. 2023. Т. 68. № 3. С. 426. https://doi.org/10.31857/S0044457X2260164X
- 2. Мацкевич Н. Н., Семершкова А. Н., Самошкин Д. А. и др. // Журн. неорган. химии. 2023. Т. 68. № 11. С. 1637. https://doi.org/10.31857/S0044457X23600731
- 3. Липина О. А., Спиридонова Т. С., Бакаанова Я. В. и др. // Журн. неорган. химии. 2023. Т. 68. № 5. С. 603. https://doi.org/10.31857/S0044457X22601973
- 4. Кожевникова Н. М. // Неорган. материалы. 2023. Т. 59. № 1. С. 100. https://doi.org/10.31857/S0002337X23010128
- 5. Пийр Н. В., Королева М. С., Максимов В. С. // Журн. общ. химии. 2023. Т. 93. № 2. С. 308.
- 6. Zhao L., Zhao X., Jiang Y. et al. // J. Asian Ceram. Soc. 2014. V. 42. № 10. P. 1279. https://doi.org/10.7521/j.issn.04545648.2014.10.11
- 7. Zalga A., Moravec Z., Pinkas J. et al. // Therm. Anal. Calorim. 2011. V. 105. № 1. P. 3. https://doi.org/10.1007/s10973-011-1367-2
- 8. Wang Y., Ma J., Tao J. et al. // Ceram. Int. 2007. V. 33. № 4. P. 693. https://doi.org/10.1016/j.ceramint.2005.11.003
- 9. Hoseinpur A., Bezanaj M. M., Khaki J. V. // Int. J. Mater. Res. 2016. V. 107. № 10. P. 935. https://doi.org/10.3139/146.111416
- 10. Thongtem T., Kungwankunakorn S., Kuntalue B. et al. // J. Alloys Compd. 2010. V. 506. № 1. P. 475. https://doi.org/10.1016/j.jallcom.2010.07.033
- 11. Thomas S. M., Balamurugan S., Ashika S.A. et al. // Results Chem. 2023. V. 5. P. 100823. https://doi.org/10.1016/j.rechem.2023.100823
- 12. Cheng J., Liu C., Cao W. et al. // Mater. Res. Bull. 2011. V. 46. № 2. P. 185. https://doi.org/10.1016/j.materresbull.2010.11.019
- 13. Gao J., Randall C.A., Zhang G. et al. // J. Mater. Chem. C. 2014. V. 2. № 35. P. 7364. http://dx.doi.org/10.1039/C4TC00698D
- 14. Mikhaylovskaya Z.A., Abrahams I., Petrova S.A. et al. // J. Solid State Chem. 2020. V. 291. P. 121627. https://doi.org/10.1016/j.jssc.2020.121627
- 15. Kaikuttea O.C., Muzaiuosekova S.A., Буянова Е. С. и др. // Журн. неорган. химии. 2023. Т. 68. № 4. С. 452. https://doi.org/10.31857/S0044457X22602048
- 16. Yao W., Ye J. // J. Phys. Chem. B. 2006. V. 110. № 23. P. 11188. https://doi.org/10.1021/jp0608729
- 17. Sameera S., Prabhakar Rao P., Divya S. // Energy Build. 2017. V. 154. P. 491. http://dx.doi.org/10.1016/j.enbuild.2017.08.089
- 18. Mikhaylovskaya Z.A., Bayanova E.S., Petrova S.A. et al. // Chim. Techno Acta. 2021. V. 8. № 2. P. 20218204. https://doi.org/10.15826/chimtech.2021.8.2.04
- 19. Maji B.K., Jena H., Asuvathraman R. et al. // J. Alloys Compd. 2015. V. 640. P. 475. https://doi.org/10.1016/j.jallcom.2015.04.054
- 20. Ramadas N., Palanisamy T., Gopalakrishnan J. et al. // Solid State Commun. 1975. V. 17. № 4. P. 545. https://doi.org/10.1016/0038-1098 (75)90498-6
- 21. Lu T., Steele B.C.H. // Solid State Ionics. 1986. V. 21. № 4. P. 339. https://doi.org/10.1016/0167-2738 (86)90196-7
- 22. Vinke I.C., Diegmond J., Boukamp B.A. et al. // Solid State Ionics. 1992. V. 57. № 1. P. 83. https://doi.org/10.1016/0167-2738 (92)90067-Y
- 23. Hoffart L., Heider U., Jörissen L. et al. // Ionics. 1995. V. 1. № 2. P. 131. https://doi.org/10.1007/BF02388670
- 24. Wang X., Song K., Ou R. // Biofes. 2017. V. 12. № 3. P. 6173. https://doi.org/10.15376/biores.12.3.6173-6186
- 25. Cao L., Fei X., Zhao H. // Dyes Pigm. 2017. V. 142. P. 100. https://doi.org/10.1016/j.dyepig.2017.03.024
- 26. Massos A., Andrew A. // Environ. Pollut. 2017. V. 227. P. 139. https://doi.org/10.1016/j.envpol.2017.04.034
- 27. Sandhya Kumari L., Prabhakar Rao P., Narayana A. et al. // Sol. Energy Mater. Sol. Cells. 2013. V. 112. P. 134. https://doi.org/10.1016/j.solmat.2013.01.022
- 28. Roth R.S., Waring J.L. // Am. Mineral. 1963. V. 48. P. 1348.
- 29. High-Performance Scientific Instruments and Solutions for Molecular and Materials Research, as well as for Industrial and Applied Analysis / Bruker AXS GmbH. Karlsruhe. 2017.
- 30. PDF-4+ JCPDS International Centre for Diffraction Data. Newtown Square. 2016.
- 31. Laugier J., Boehu B. // Basic Demonstration of CELLREF Unit-Cell refinement software on a multiphase system / Collaborative Computational Project № 14. London. 2003.
- 32. Mikhaylovskaya Z.A., Klimova A.V., Pankrushina E.A. et al. // Chim. Techno Acta. 2023. V. 10. № 4. P. 20231041. https://doi.org/10.15826/chimtech.2023.10.4.11
- 33. Gomes E.O., Gouveia A.F., Gracia L. et al. // J. Phys. Chem. Lett. 2022. V. 13. № 42. P. 9883. https://doi.org/10.1021/acs.jpclett.2c02582
- 34. Shannon R.D. // Acta Crystallogr., Sect. A: Found. 1976. V. 32. № 5. P. 751. https://doi.org/10.1107/S0567739476001551
- 35. Zverev P.G. // Phys. Status Solidi C. 2004. V. 1. № 11. P. 3101. https://doi.org/10.1002/pssc.200405413
- 36. Porto S.P.S., Scott J.F. // Phys. Rev. 1967. V. 157. № 3. P. 716. https://doi.org/10.1103/PhysRev.157.716
- 37. Панкрушина Е.А., Михайловская З.А., Шапова Ю.В. и др. // Геодинамика и тектонофизика. 2022. V. 13. № 2. P. 0609. https://doi.org/10.5800/GT-2022-13-2s-0609
- 38. Mikhaylovskaya Z.A., Pankrushina E.A., Komleva E.V. et al. // Mater. Sci. Eng. B. 2022. V. 281. P. 115741. https://doi.org/10.1016/j.mseb.2022.115741
- 39. Teixeira M.M., de Oliveira R.C., Oliveira M.C. et al. // Inorg. Chem. 2018. V. 57. № 24. P. 15489. https://doi.org/10.1021/acs.inorgchem.8b02807
- 40. Wojdyr M. // J. Appl. Crystallogr. 2010. V. 43. P. 1126. https://doi.org/10.1107/S0021889810030499
- 41. Pankrushina E.A., Kobuzov A.S., Shchapova Y.V. et al. // J. Raman Spectrosc. 2020. V. 51. № 9. P. 1549. https://doi.org/10.1002/jrs.5825
- 42. Irvine J.T.S., Sinclair D.C., West A.R. // Adv. Mater. 1990. V. 2. № 3. P. 132. https://doi.org/10.1002/adma.19900020304
- 43. Esaka T. // Solid State Ionics. 2000. V. 136. P. 1. https://doi.org/10.1016/S0167-2738 (00)00377-5