- PII
- 10.31857/S0044457X24120195-1
- DOI
- 10.31857/S0044457X24120195
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 69 / Issue number 12
- Pages
- 1872-1881
- Abstract
- ZnO/CNT nanocomposites with CNT content from 0.01 to 10 wt.% were prepared using solvothermal synthesis. The thermal behavior of the obtained composites was studied at heating up to 850℃ using DSC/TGA. The phase composition was studied using XRD and Raman spectroscopy and the formation of hexagonal wurtzite phase was established. According to SEM data, zinc oxide nanoparticles are localized on the CNT surface. The temperature dependence of electrical resistance of ZnO/CNT nanocomposites was studied. It is shown that semiconductor or metallic type of conductivity is observed depending on the CNT content. The chemoresistive responses to a wide range of gases were studied at room temperature, the best sensitivity was shown by the sample with the lowest CNT content (0.01 wt. %).
- Keywords
- газовый сенсор оксид цинка (ZnO) углеродные нанотрубки (УНТ) нанокомпозит
- Date of publication
- 17.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 15
References
- 1. McAleer J.F., Moseley P.T., Norris J.O.W. et al. // J. Chem. Soc., Faraday Trans 1: Phys. Chem. Condens. Phases. 1987. V. 83. № 4. P. 1323. https://doi.org/10.1039/f19878301323
- 2. Morrison S.R. // Sensors and Actuators. 1981. V. 2. P. 329. https://doi.org/10.1016/0250-6874 (81)80054-6
- 3. Heiland G. // Sens. Actuators. 1981. V. 2. P. 343. https://doi.org/10.1016/0250-6874 (81)80055-8
- 4. Rigoni F., Tognolini S., Borghetti P. et al. // Analyst. 2013. V. 138. № 24. P. 7392. https://doi.org/10.1039/c3an01209c
- 5. Schedin F., Geim A.K., Morozov S.V. et al. // Nat. Mater. 2007. V. 6. № 9. P. 652. https://doi.org/10.1038/nmat1967
- 6. Olorunkosebi A.A., Olumurewa K.O., Fasakin O. et al. // RSC Adv. 2023. V. 13. № 24. P. 16630. https://doi.org/10.1039/D3RA01684F
- 7. Toda K., Furue R., Hayami S. // Anal. Chim. Acta. 2015. V. 878. P. 43. https://doi.org/10.1016/j.aca.2015.02.002
- 8. Kim S.J., Koh H.-J., Ren C.E. et al. // ACS Nano. 2018. V. 12. № 2. P. 986. https://doi.org/10.1021/acsnano.7b07460
- 9. Wang F., Yang C., Duan C. et al. // J. Electrochem. Soc. 2015. V. 162. № 1. P. B16. https://doi.org/10.1149/2.0371501jes
- 10. Junkaew A., Arroyave R. // Phys. Chem. Chem. Phys. 2018. V. 20. № 9. P. 6073. https://doi.org/10.1039/C7CP08622A
- 11. Mokrushin A.S., Nagornov I.A., Gorobtsov P.Y. et al. // Chemosensors. 2022. V. 11. № 1. P. 13. https://doi.org/10.3390/chemosensors11010013
- 12. Mokrushin A.S., Nagornov I.A., Averin A.A. et al. // Chemosensors. 2023. V. 11. № 2. P. 142. https://doi.org/10.3390/chemosensors11020142
- 13. Simonenko E.P., Simonenko N.P., Nagornov I.A. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 5. P. 705. https://doi.org/10.1134/S0036023622050187
- 14. Wang J., Zeng W., Zhou Q. // Front. Chem. 2022. V. 10. https://doi.org/10.3389/fchem.2022.950974
- 15. Li L., Yu M., Gao C. et al. // J. Alloys Compd. 2024. V. 1003. P. 175530. https://doi.org/10.1016/j.jallcom.2024.175530
- 16. Samawi K.A., Abdulrazzaq S.J., Zorah M. et al. // J. Solid State Chem. 2024. V. 334. P. 124690. https://doi.org/10.1016/j.jssc.2024.124690
- 17. Lama S., Choi H.-S., Ramesh S. et al. // Sci. Rep. 2024. V. 14. № 1. P. 11605. https://doi.org/10.1038/s41598-024-56354-1
- 18. Luo K., Peng H., Zhang B. et al. // Coord. Chem. Rev. 2024. V. 518. P. 216049. https://doi.org/10.1016/j.ccr.2024.216049
- 19. Zamansky K.K., Fedorov F.S., Shandakov S.D. et al. // Sens. Actuators, B. 2024. V. 417. P. 136116. https://doi.org/10.1016/j.snb.2024.136116
- 20. Struchkov N.S., Romashkin A.V., Rabchinskii M.K. et al. // Sens. Actuators, B. 2024. V. 417. P. 136088. https://doi.org/10.1016/j.snb.2024.136088
- 21. Xie T., Li F., Song P. et al. // J. Alloys Compd. 2024. V. 1002. P. 175271. https://doi.org/10.1016/j.jallcom.2024.175271
- 22. Li Q., He R., Feng F. et al. // Sens. Actuators, B. 2024. V. 413. P. 135863. https://doi.org/10.1016/j.snb.2024.135863
- 23. Dariyal P., Sharma S., Chauhan G.S. et al. // Nanoscale Adv. 2021. V. 3. № 23. P. 6514. https://doi.org/10.1039/D1NA00707F
- 24. Xu K., Fu C., Gao Z. et al. // Instrum. Sci. Technol. 2018. V. 46. № 2. P. 115. https://doi.org/10.1080/10739149.2017.1340896
- 25. Mokrushin A.S., Nagornov I.A., Gorban Y.M. et al. // Ceram. Int. 2023. V. 49. № 11. P. 17600. https://doi.org/10.1016/j.ceramint.2023.02.126
- 26. Nagornov I.A., Mokrushin A.S., Simonenko E.P. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 4. P. 539. https://doi.org/10.1134/S0036023622040143
- 27. Kong J., Franklin N.R., Zhou C. et al. // Science (80-.). 2000. V. 287. № 5453. P. 622. https://doi.org/10.1126/science.287.5453.622
- 28. Li J., Lu Y., Ye Q. et al. // Nano Lett. 2003. V. 3. № 7. P. 929. https://doi.org/10.1021/nl034220x
- 29. Jeong S., Kim J., Lee J. // Adv. Mater. 2020. V. 32. № 51. https://doi.org/10.1002/adma.202002075
- 30. Verssimo M.I.S. // TrAC Trends Anal. Chem. 2024. V. 178. P. 117813. https://doi.org/10.1016/j.trac.2024.117813
- 31. Norizan M.N., Moklis M.H., Ngah Demon S.Z. et al. // RSC Adv. 2020. V. 10. № 71. P. 43704. https://doi.org/10.1039/D0RA09438B
- 32. Mokrushin A.S., Gorban Y.M., Nagornov I.A. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 12. P. 2099. https://doi.org/10.1134/S0036023622601520
- 33. Lucci M., Regoliosi P., Reale A. et al. // Sens. Actuators B. 2005. V 111-112. P 181. https://doi.org/10.1016/j.snb.2005.06.033
- 34. Mercuri F., Sgamellotti A., Valentini L. et al. // J. Phys. Chem. B. 2005. V. 109. № 27. P. 13175. https://doi.org/10.1021/jp0507290
- 35. Марикуца А.В., Воробьева Н.А., Румянцева М.Н. // Изв. АН. Сер. химическая. 2017. Т. 10. С. 1728. https://doi.org/1026-3500
- 36. Kauffman D.R., Star A. // Angew. Chem. Int. Ed. 2008. V. 47. № 35. P. 6550. https://doi.org/10.1002/anie.200704488
- 37. Мокрушин А.С., Симоненко Н.П., Симоненко Т.Л. и др. // Журн. неорган. химии. 2021. V. 66. № 9. P. 1336. https://doi.org/10.31857/S0044457X21090063
- 38. Li J., Zhang C., QuG. et al. // Talanta. 2024. V. 273. P. 125853. https://doi.org/10.1016/j.talanta.2024.125853
- 39. Nami M., Taheri M., Deen I.A. et al. // TrAC Trends Anal. Chem. 2024. V. 174. P. 117664. https://doi.org/10.1016/j.trac.2024.117664
- 40. Gamboa A., Fernandes E.C. // Sens. Actuators A. 2024. V. 366. P. 115013. https://doi.org/10.1016/j.sna.2024.115013
- 41. Kumar D., Chaturvedi P., Saho P. et al. // Sens. Actuators B. 2017. V. 240. P. 1134. https://doi.org/10.1016/j.snb.2016.09.095
- 42. Tian T., Yin H., Zhang L. et al. // Appl. Surf. Sci. 2023. V. 609. P. 155357. https://doi.org/10.1016/j.apsusc.2022.155357
- 43. Lone M.Y., Kumar A., Husain S. et al. // Physica E: Low-dimensional Syst. Nanostructures. 2017. V. 87. P. 261. https://doi.org/10.1016/j.physe.2016.10.049
- 44. Xiao Z., Kong L.B., Ruan S. et al. // Sens. Actuators B. 2018. V. 274. P. 235. https://doi.org/10.1016/j.snb.2018.07.040
- 45. Zaporotskova I.V., Boroznina N.P., Parkhomenko Y.N. et al. // Mater. Electron. Eng. 2018. V. 20. № 1. P. 5. https://doi.org/10.17073/1609-3577-2017-1-5-21
- 46. Young S.-J., Liu Y.-H., Lin Z.-D. et al. // J. Electrochem. Soc. 2020. V. 167. № 16. P. 167519. https://doi.org/10.1149/1945-7111/abd1be
- 47. Belchi R., Pibaleau B., Pinault M. et al. // Mater. Adv. 2020. V. 1. № 5. P. 1232. https://doi.org/10.1039/D0MA00204F
- 48. Yang M., Gong Y., Shen G. et al. // Mater. Lett. 2021. V. 283. P. 128733. https://doi.org/10.1016/j.matlet.2020.128733
- 49. Schutt F., Postica V., Adelung R. et al. // ACS Appl. Mater. Interfaces. 2017. V. 9. № 27. P. 23107. https://doi.org/10.1021/acsami.7b03702
- 50. Sinha M., Neogi S., Mahapatra R. et al. // Sens. Actuators B. 2021. V. 336. P. 129729. https://doi.org/10.1016/j.snb.2021.129729
- 51. Park S., Byoun Y., Kang H. et al. // ACS Omega. 2019. V. 4. № 6. P. 10677. https://doi.org/10.1021/acsomega.9b00773
- 52. Zhang D., Sun Y., Zhang Y. // J. Mater. Sci. Mater. Electron. 2015. V. 26. № 10. P. 7445. https://doi.org/10.1007/s10854-015-3378-4
- 53. Simonenko E.P., Simonenko N.P., Nagornov I.A. et al. // Russ. J. Inorg. Chem. 2017. V. 62. № 11. P. 1415. https://doi.org/10.1134/S0036023617110195
- 54. Nagornov I.A., Mokrushin A.S., Simonenko E.P. et al. // Ceram. Int. 2020. V. 46. № 6. P. 7756. https://doi.org/10.1016/j.ceramint.2019.11.279
- 55. Simonenko E.P., Simonenko N.P., Nagornov I.A. et al. // Russ. J. Inorg. Chem. 2018. V. 63. № 11. P. 1519. https://doi.org/10.1134/S0036023618110189
- 56. Simonenko E.P., Nagornov I.A., Mokrushin A.S. et al. // Micromachines. 2023. V. 14. № 4. P. 725. https://doi.org/10.3390/mi14040725
- 57. Fedorov F.S., Simonenko N.P., Trouillet V. et al. // ACS Appl. Mater. Interfaces. 2020. V. 12. № 50. P. 56135. https://doi.org/10.1021/acsami.0c14055
- 58. Mokrushin A.S., Nagornov I.A., Simonenko T.L. et al. // Appl. Surf. Sci. 2022. V. 589. P. 152974. https://doi.org/10.1016/j.apsusc.2022.152974
- 59. Scepanovic M., Grujic-Brojcin M., Vojisavljevic K. et al. // J. Raman Spectrosc. 2010. V. 41. № 9. P. 914. https://doi.org/10.1002/jrs.2546
- 60. Jiang C., Zhao J., Therese H.A. et al. // J. Phys. Chem. B. 2003. V. 107. № 34. P. 8742. https://doi.org/10.1021/jp035371r