RAS Chemistry & Material ScienceЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

DERIVATION OF A FORCE FIELD FOR COMPUTER SIMULATIONS OF MULTI-WALLED NANOTUBES. II. TUNGSTEN DISELENIDE

PII
10.31857/S0044457X24120169-1
DOI
10.31857/S0044457X24120169
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 69 / Issue number 12
Pages
1834-1847
Abstract
We propose a force field designed to model multi-walled WSe2 nanotubes whose size is beyond the capabilities of ab initio methods. The parameterization of interatomic potentials is successfully tested on single-walled and double-walled nanotubes, the structure of which is determined using non-empirical calculations. The above force field was applied to model the structure and stability of chiral and achiral multi-walled WSe2 nanotubes with diameters that approach experimental values. The properties of WSe2-based nanotubes are compared with the properties of analogous WS2-based nanotubes calculated using the force field, which was published in the previous paper I of this series. The interwall distances obtained from the simulations are in good agreement with recent measurements of these parameters for existing WS2 and WSe2 nanotubes. It is found that the inter-wall interaction contributes to the stabilization of multi-walled nanotubes slightly more in the case of WSe2 than in the case of WS2. Analysis of the deviation of the nanotube shape from the cylindrical one showed a close similarity of the structure of the tubes of both compositions.
Keywords
межатомные потенциалы генетические алгоритмы многостенные нанотрубки энергия связывания энергия сворачивания DFT-расчеты
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
14

References

  1. 1. Musfeldt J.L., Iwasa Y., Tenne R. // Phys. Today. 2020. V. 73. № 8. P. 42. https://doi.org/10.1063/PT.3.4547
  2. 2. Bar-Saden M., Tenne R. // Nat. Mater. 2024. V. 23. P. 310. https://doi.org/10.1038/s41563-023-01609-x
  3. 3. Jorio A., Dresselhaus G., Dresselhaus M.S. Carbon nanotubes: Advanced topics in the synthesis, structure, properties and applications. Berlin: Springer, 2008.
  4. 4. Schaibley J.R., Yu H., Clark G. et al. // Nat. Rev. Mater. 2016. V. 1. P. 16055. https://doi.org/10.1038/natrevmats.2016.55
  5. 5. Yomogida Y., Miyata Y., Yanagi K. // Appl. Phys. Express. 2019. V. 12. P. 085001. https://doi.org/10.7567/1882-0786/ab2acb
  6. 6. Heming X., Xinyu C., Song L. et al. // Nano Lett. 2021. V. 21. P. 4937. https://doi.org/10.1021/acs.nanolett.1c00497
  7. 7. Sun Y., Xu S., Xu Z. et al. // Nat. Commun. 2022. V. 13. P. 5391. https://doi.org/10.1038/s41467-022-33118-x
  8. 8. Yomogida Y., Kainuma Y., Endo T. et al. // Appl. Phys. Lett. 2020. V. 116. P. 203106. https://doi.org/10.1063/5.0005314
  9. 9. Sinha S.S., Yadgarov L., Aliev S.B. et al. // J. Phys. Chem. C. 2021. V. 125. P. 6324. https://dx.doi.org/10.1021/acs.jpcc.0c10784
  10. 10. Kumar S., Schwingenschlogl U. // Chem. Mater. 2015. V. 27. P. 1278. https://doi.org/10.1021/cm504244b
  11. 11. Chuang H.-J., Tan X., Ghimire N.J. et al. // Nano Lett. 2014. V. 14. P. 3594. https://doi.org/10.1021/nl501275p
  12. 12. Galvan D.H., Rangel R., Adem E. // Fullerene Sci. Technol. 2000. V. 9. P. 15. https://doi.org/10.1080/10641220009351392
  13. 13. Kim H., Yun S.J., Park J.C. et al. // Small. 2015. V. 11. P. 2192. https://doi.org/10.1002/smll.201403279
  14. 14. Sreedhara M.B., Miroshnikov Y., Zheng K. et al. // J. Am. Chem. Soc. 2022. V. 144. P. 10530. https://doi.org/10.1021/jacs.2c03187
  15. 15. An Q., Xiong W., Hu F. et al. // Nat. Mater. 2024. V. 23. P. 347. https://doi.org/10.1038/s41563-023-01590-5
  16. 16. Ghosh S., Bruser V., Kaplan-Ashiri I. et al. // Appl. Phys. Rev. 2020. V. 7. P. 041401. https://doi.org/10.1063/5.0019913
  17. 17. Bandura A.V., Lukyanov S.I., Domnin A.V. et al. // Russ. J. Inorg. Chem. 2023. V. 68. P. 1582. https://doi.org/10.1134/S003602362360209X
  18. 18. Bandura A.V., Lukyanov S.I., Domnin A.V. et al. // Comput. Theor. Chem. 2023. V. 1229. P. 114333. https://doi.org/10.1016/j.comptc.2023.114333
  19. 19. Nielsen C.E.M., da Cruz M., Torche A. et al. // Phys. Rev. B. 2023. V. 108. P. 045402. https://doi.org/10.1103/PhysRevB.108.045402
  20. 20. Bandura A.V., Lukyanov S.I., Kuruch D.D. et al. // Physica E. 2020. V. 124. P. 114183. https://doi.org/10.1016/j.physe.2020.114183
  21. 21. Evarestov R.A., Bandura A.V., Porsev V.V. et al. // J. Comput. Chem. 2017. V. 38. P. 2581. https://doi.org/10.1002/jcc.24916
  22. 22. Evarestov R.A., Kovalenko A.V., Bandura A.V. et al. // Mater. Res. Express. 2018. V. 5. P. 115028. https://doi.org/10.1088/2053-1591/aadf00
  23. 23. Evarestov R.A., Kovalenko A.V., Bandura A.V. et al. // Physica E. 2020. V. 115. P. 113681. https://doi.org/10.1016/j.physe.2019.113681
  24. 24. Dovesi R., Erba A., Orlando R. et al. // WIREs Comput. Mol. Sci. 2018. V. 8. № 4. P. e1360. https://doi.org/10.1002/wcms.1360
  25. 25. Dovesi R., Saunders V.R., Roetti C. et al. // CRYSTAL17 User’s Manual. University of Turin. Torino, 2018.
  26. 26. Pacios L.F., Christiansen P.A. // J. Chem. Phys. 1985. V. 82. P. 2664. https://doi.org/10.1063/1.448263
  27. 27. Ross R.B., Powers J.M., Atashroo T. et al. // J. Chem. Phys. 1990. V. 93. P. 6654. https://doi.org/10.1063/1.458934
  28. 28. Heyd J., Scuseria G.E., Ernzerhof M. // J. Chem. Phys. 2003. V. 118. P. 8207. https://doi.org/10.1063/1.1564060
  29. 29. Monkhorst H.J., Pack J.D. // Phys. Rev. B. 1976. V. 13. № 12. P. 5188. https://doi.org/10.1103/PhysRevB.13.5188
  30. 30. Grimme S. // J. Comput. Chem. 2006. V. 27. P. 1787. https://doi.org/10.1002/jcc.20495
  31. 31. Deb K., Jain H. // IEEE Trans. Evol. Comput. 2014. V. 18. P. 577. https://doi.org/10.1109/TEVC.2013.2281535
  32. 32. Bhesdadiya R.H., Trivedi I.N., Jangir P. et al. // Cogent Eng. 2016. V. 3. P. 1269383. https://doi.org/10.1080/23311916.2016.1269383
  33. 33. Xue X., Lu J., Chen J. // CAAI Trans. Intelligence Technol. 2019. V. 4. P. 135. https://doi.org/10.1049/trit.2019.0014
  34. 34. Chen L., Gu Q., Wang R. et al. // Sustainability. 2022. V. 14. P. 10766. https://doi.org/10.3390/su141710766
  35. 35. Gale J.D., Rohl A.L. // Mol. Simulation. 2003. V. 29. № 5. P. 291. https://doi.org/10.1080/0892702031000104887
  36. 36. Bader R.F.W. // Acc. Chem. Res. 1985. V. 18. P. 9. https://doi.org/10.1021/ar00109a003
  37. 37. Jishi R.A., Dresselhaus M.S., Dresselhaus G. // Phys. Rev. B. 1993. V. 47. P. 16671. https://doi.org/10.1103/physrevb.47.16671
  38. 38. Barros E.B., Jorio A., Samsonidze G.G. et al. // Phys. Rep. 2006. V. 431. P. 261. https://doi.org/10.1016/j.physrep.2006.05.007
  39. 39. Damnjanovic M., Nikolic B., Milosevic I. // Phys. Rev. B. 2007. V. 75. P. 033403. https://doi.org/10.1103/PhysRevB.75.033403
  40. 40. Marana N.L., Noel Y., Sambrano J.R. et al. // J. Phys. Chem. A. 2021. V. 125. P. 4003. https://doi.org/10.1021/acs.jpca.1c01682
  41. 41. Nguyen M.A.T., Gupta A.S., Shevrin J. et al. // RSC Adv. 2018. V. 8. P. 9871. https://doi.org/10.1039/c8ra01497c
  42. 42. Xu K., Wang F., Wang Z. et al. // ACS Nano. 2014. V. 8. № 8. P. 8468. https://doi.org/10.1021/nn503027k
  43. 43. Krause M., Mucklich A., Zak A. et al. // Phys. Status Solidi B. 2011. V. 248. P. 2716. https://dx.doi.org/10.1002/pssb.201100076
  44. 44. Bandura A.V., Evarestov R.A. // J. Comput. Chem. 2014. V. 35. P. 395. https://dx.doi.org/10.1002/jcc.23508
  45. 45. Bandura A.V., Evarestov R.A. // Surf. Sci. 2015. V. 641. P. 6. https://doi.org/10.1016/j.susc.2015.04.027
  46. 46. Leven I., Guerra R., Vanossi A. et al. // Nature Nanotech. 2016. V. 11. P. 1082. https://doi.org/10.1038/nnano.2016.151
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library