- PII
- 10.31857/S0044457X24120153-1
- DOI
- 10.31857/S0044457X24120153
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 69 / Issue number 12
- Pages
- 1826-1833
- Abstract
- Quantum chemical calculations of the geometric and electronic structures of Fe2O7 and Fe2O9 clusters, as well as the reactions of interaction of Fe2O7 with H2 molecules, O2 and Fe2O9 with an H2 molecule in the gas phase were performed. Calculations were performed using the density functional theory method in the generalized gradient approximation using a triple-zeta basis. Differences in the thermal effects of these reactions during the interaction of clusters with H2 and O2 molecules were found. It was found that in the case of the reaction of Fe2O7 with an H2 molecule, the total spins of the initial reactants and the final products do not coincide, that is, spin relaxation occurs during the reaction.
- Keywords
- кластеры оксидов железа теория функционала плотности
- Date of publication
- 17.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 13
References
- 1. Prima D.O., Kulikovskaya N.S., Galushko A.S. et al. // Curr. Opin. Green Sustain. Chem. 2021. V. 31. P. 100502. https://doi.org/10.1016/j.cogsc.2021.100502
- 2. Kashin A.S., Ananikov V.P. // J. Org. Chem. 2013. V. 78. P. 11117. https://doi.org/10.1021/jo402038p.
- 3. Yang S., Rao D., YeJ. et al. // Int. J. Hydrogen Energy. 2021. V. 46. P. 3484. https://doi.org/10.1016/j.ijhydene.2020.11.008
- 4. Zhang X., Zhang M., Deng Y. et al. // Nature. 2021. V. 589. P. 396. https://doi.org/10.1038/s41586-020-03130-6
- 5. Singh B., Gawande M.B., Kute A.D. et al. // Chem. Rev. 2021. V. 121. P. 13620. https://doi.org/10.1021/acs.chemrev.1c00158
- 6. Zhang H., Hwang S., Wang M. et al. // J. Am. Chem. Soc. 2017. V. 139. P. 14143. https://pubs.acs.org/doi/10.1021/jacs.7b06514
- 7. Zhou J., Xu Z., Xu M. et al. // Nanoscale Adv. 2020. V. 2. P. 3624. https://doi.org/10.1039/D0NA00393J
- 8. Gobbo O.L., Sjaastad K., Radomski M.W. et al. // Theranostics. 2015. V. 5.№ 11. P. 1249. https://doi.org/10.7150
- 9. Gong Yu, Mingfei Z., Andrews L. // Chem. Rev. 2009. V. 109. P. 6765. https://doi.org/10.1021/cr900185x
- 10. de Oliveira O.V., de Pires J.M., Neto A.C. et al. // Chem. Phys. Lett. 2015. V. 634. P. 25. https://doi.org/10.1016/j.cplett.2015.05.069
- 11. Roy D.R., Robles R., Khanna S.N. // J. Chem. Phys. 2010. V. 132. P. 194305. https://doi.org/10.1063/1.3425879
- 12. Roy D.R., Roblesand R., Khanna S.N. // J. Chem. Phys. 2010. V. 2. P. 194305. https://doi.org/10.1063/1.3425879
- 13. Xue W., Yin S., Ding X.-L. et al. // J. Phys. Chem. A. 2009. V. 113. P. 5302.
- 14. Li P., Miser D.E., Rabiei S. et al. // Appl. Catal. B. 2003. V. 43. P. 151. https://doi.org/10.1016/S0926-3373 (02)00297-7
- 15. Khedr M.H., Abdel Halim K.S., Nasr M.I. et al. // Mater. Sci. Eng. A. 2006. V. 430. P. 40. https://doi.org/10.1016/j.msea.2006.05.119
- 16. Reddy B.V., Rasouli F., Hajaligol M.R. et al. // Chem. Phys. Lett. 2004. V. 384. P. 242. https://doi.org/10.1016/j.cplett.2003.12.023
- 17. Боженко К.В., Утенышев А.Н., Гуцев Л.Г. и др. // Журн. неорган. химии. 2022. Т. 67. № 12. C. 1789. (Russ. J. Inorg. Chem. 2022. V. 67. № 12. P. 2003.) https://doi.org/10.1134/S0036023622601751
- 18. Боженко К.В., Утенышев А.Н., Гуцев Л.Г. и др. // Журн. неорган. химии. 2022. Т. 68. № 10. C. 1454. https://doi.org/10.31857/S0044457X23600457
- 19. Gaussian 09, Revision C.01. Gaussian, Inc. Wallingford CT - 2009.
- 20. Curtiss L.A., McGrath M.P., Blaudeau J.-P. et al. // J. Chem. Phys. 1995. V. 103. P. 6104. https://doi.org/10.1063/1.470438
- 21. Becke A.D. // Phys. Rev. A. 1988. V. 38. P. 3098. https://doi.org/10.1103/PhysRevA.38.3098
- 22. Perdew J.P., Wang Y. // Phys. Rev. B. 1992. V. 45. P. 13244. https://doi.org/10.1103/PhysRevB.45.13244
- 23. Gutsev G.L., Andrews L., Bauschlicher C.W. // Theor. Chem. Acc. 2003. V. 109. P. 298. https://doi.org/10.1007/s00214-003-0428-4
- 24. Gutsev G.L., Rao B.K., Jena P. // J. Phys. Chem. A. 2000. V. 104. P. 5374. https://doi.org/10.1021/jp9909006
- 25. Gutsev G.L., Rao B.K., Jena P. // J. Phys. Chem. A. 2000. V. 104. P. 11961. https://doi.org/10.1021/jp002252s
- 26. Gutsev G.L., Bauschlicher C.W., Zhai H.-J. et al. // J. Chem. Phys. 2003. V. 119. P. 11135. https://doi.org/10.1063/1.1621856
- 27. Pradhan K., Gutsev G.L., Weatherford C.A. et al. // J. Chem. Phys. 2011. V. 134. P. 144305. https://doi.org/10.1063/1.3570578
- 28. Gutsev G.L., Rao B.K., Jena P. et al. //J. Chem. Phys. 2000. V. 113. P. 1473. https://doi.org/10.1063/1.481964
- 29. Gutsev G.L., Rao B.K., Jena P. et al. // Chem. Phys. Lett. 1999. V. 312. P. 598. https://doi.org/10.1016/S0009-2614 (99)00976-8
- 30. Ju M., Lv J., Kuang X.-Y. et al. // RSC Adv. 2015. V. 5. P. 6560. https://doi.org/10.1039/C4RA12259C
- 31. Li S., Zhai H.-J., WangL.-S. et al. //J. Phys. Chem. A. 2009. V. 1. P. 11273. https://doi.org/10.1021/jp9082008
- 32. Li S., Dixon D.A. //J. Phys. Chem. A. 2008. V. 112. P. 6646. https://doi.org/10.1021/jp800170q
- 33. Zhai H.-J., Li S., Dixon D. A. et al. // J. Am. Chem. Soc. 2008. V. 130. P. 5167. https://doi.org/10.1021/ja077984d
- 34. Grein F. // Int. J. Quantum. Chem. 2009. V. 109. P. 549. https://doi.org/10.1002/qua.21855
- 35. Li S., Jamie M., Hennigan Dixon D.A. et al. //J. Phys. Chem. A. 2009. V. 113. P. 7861. https://doi.org/10.1021/jp810182a
- 36. Fang Z., Both J., Li S. et al. // J. Chem. Theory Comput. 2016. V. 12. P. 3689. DOI: 10.1021/acs.jctc.6b00464
- 37. Yang K., Zheng J., Zhao Y. et al. // J. Chem. Phys. 2010. V. 132. P. 164117. https://doi.org/10.1063/1.3382342
- 38. Gutsev G., Bozhenko K., Gutsev L. et al. //J. Comput. Chem. 2019. V. 40. P. 562. https://doi.org/10.1002/jcc.25739
- 39. Wang Z, Liang Y., Yang Y. étal. // Chem. Phys.Lett. 2018. V. 705. P. 59. https://doi.org//10.1016/j.cplett.2018.05.045
- 40. Garcia J.M., Shaffer R.E., Sayres S.G. // Phys. Chem. Chem. Phys. 2020. V. 22. P. 24624. https://doi.org/10.1039/D0CP03889J
- 41. Elliott P., Singh N., Krieger K. étal. //J. Magn. Magn. Mater. 2020. V. 502. P. 166473. https://doi.org/10.1016/j.jmmm.2020.166473
- 42. Zheng Z., Zheng Q., Zhao J. // Phys. Rev. B. 2022. V. 105 P. 085142. https://doi.org/10.1103/PhysRevB.105.085421