- Код статьи
- 10.31857/S0044457X24120148-1
- DOI
- 10.31857/S0044457X24120148
- Тип публикации
- Статья
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том 69 / Номер выпуска 12
- Страницы
- 1815-1825
- Аннотация
- Методами квантовой химии проведены расчеты гетероядерных кластеров оксоалкоксо(RexMo4-xO6(OMe)10) и оксогидроксоалкоксокомплексов (RexMo4-xO6-n(ОН)n(OMe)10, n = 1, 2, 4) рения и молибдена. Остов кластеров представляет собой ромб из четырех атомов металла, связанных мостиковыми атомами кислорода по сторонам и малой диагонали. Алкоксогруппы занимают концевые положения. Рассчитано строение и относительная стабильность изомеров положения гетероатомов металлов по вершинам ромба. Определены теоретические разности полных энергий относительно наиболее стабильного изомера, длины связей металл-металл, индексы порядков связей и суммы этих индексов для каждого изомера. Установлено, что в ряде случаев наряду с мостиковыми связями М–О–М' образуются связи металл-металл.
- Ключевые слова
- квантово-химические расчеты тетраядерные кластеры геометрические изомеры рений молибден
- Дата публикации
- 17.09.2025
- Год выхода
- 2025
- Всего подписок
- 0
- Всего просмотров
- 12
Библиография
- 1. Lunk H.-J., Drobot D.V., Hartl H. // ChemTexts. 2021. V. 7. № 6. https://doi.org/10.1007/s40828-020-00123-w
- 2. Kessler V.G. // Comprehensive Inorganic Chemistry II: From Elements to Applications. 2013. P. 455. ISBN 10:008097774X
- 3. Наумов А.В. // Изв. ВУЗов. Цветные металлы. 2007. № 6. С. 36.
- 4. Ермаков А.И., Белоусов В.В., Дробот Д.В. и др. // Коорд. химия. 2006. Т. 32. № 10. С. 732.
- 5. Shcheglov P.A., Drobot D.V., Seisenbaeva G.A. et al. // Inorg. Chem. Commun. 2001. V. 4. № 5. P. 227. https://doi.org/10.1016/s1387-7003 (01)00154-x
- 6. Дробот Д.В., Щеглов П.А., Сейсенбаева Г.А. и др. // Изв. ВУЗов. Цветная металлургия. 2002. № 6. С. 32.
- 7. Nikonova O.A., Jansson K., Kessler V.G. et al. // Inorg. Chem. 2008. V. 47. № 4. P. 1295. https://doi.org/10.1021/ic701781k
- 8. Bryan J.C., Wheeler D.R., Clark D.L. et al. // J. Am. Chem. Soc. 1991. V. 113. № 8. P. 3184. https://doi.org/10.1021/Ja00008A064
- 9. Куликова Е.С., Дробот Д.В., Яржемский В.Г. и др. // Журн. неорган. химии. 2018. Т. 63. № 11. C. 1425. https://doi.org/10.1134/S0044457X18110119
- 10. Бандура А.В., Лукьянов С.И., Домнин А.В. и др. // Журн. неорган. химии. 2023. Т. 68. № 11. C. 1588. https://doi.org/10.31857/S0044457X23601086
- 11. Чаркин О.П. // Журн. неорган. химии. 2023. Т. 68. № 4. C. 499. https://doi.org/10.31857/S0044457X23700186
- 12. Zhabanov Yu.A., Giricheva N.I., Islyaikin M.K. // Russ. J. Inorg. Chem. 2022. V. 67. № 3. P. 350. https://doi.org/10.1134/S0036023622030172
- 13. Ильин Е.Г., Бейрахов А.Г., Яржемский В.Г. и др. // Журн. неорган. химии. 2018. Т. 63. № 4. C. 462. https://doi.org/10.7868/S0044457X18040116
- 14. Норов Ю.В., Паршаков А.С., Яржемский В.Г. и др. // Журн. неорган. химии. 2010. Т. 55. № 12. C. 2033.
- 15. Ильин Е.Г., Паршаков А.С., Буряк А.К. и др. // Докл. Акад. наук. 2009. Т. 427. № 5. С. 641.
- 16. Lin S.-J., Gong W.-C., Wang L.-F. et al. // Theor. Chem. Acc. 2014. V. 133. P. 1435. https://doi.org/10.1007/s00214-013-1435-8
- 17. Molek K.S., Jaeger T.D., Duncan M.A. // J. Chem. Phys. 2005. V. 123. № 14. P. 144313. https://doi.org/10.1063/1.2050650
- 18. Dong F., Heinbuch S., He S.G. et al. // J. Chem. Phys. 2006. V. 125. № 16. P. 164318. https://doi.org/10.1063/1.2358980
- 19. Cordier S., Loisel C., Perrin C. et al. // J. Solid State Chem. 1999. V. 147. № 1. P. 350. https://doi.org/10.1006/jssc.1999.8337
- 20. Wright D.A., Williams D.A. // Acta Crystallogr., Sect. B. 1968. V. 24. № 8. P. 1107. https://doi.org/10.1107/S0567740868003766
- 21. Schmidt M.W., Baldridge K.K., Boatz J.A. et al. // J. Comput. Chem. 1993. V. 14. № 11. P. 1347. https://doi.org/10.1002/jcc.540141112
- 22. Barca G.M.J., Bertoni C., Carrington L. et al. // J. Chem. Phys. 2020. V. 152. № 15. P. 154102. https://doi.org/10.1063/5.0005188
- 23. Dunning Jr.T.H., Hay P.J. // In Modern Theoretical Chemistry, Ed. Schaefer H.F. III (Plenum, New York). 1977. V. 3. P. 1. https://doi.org/10.1007/978-1-4757-0887-5
- 24. Hay P.J., Wadt W.R. // J. Chem. Phys. 1985. V. 82. № 1. P. 299. https://doi.org/10.1063/1.448975
- 25. Becke A.D. // J. Chem. Phys. 1993. V. 98. № 7. P. 5648. https://doi.org/10.1063/1.464913
- 26. Lee C., Yang W., Parr R.G. // Phys. Rev. B. 1988. V. 37. № 2. P. 785. https://doi.org/10.1103/PhysRevB.37.785
- 27. Andrae D., Haeussermann U., Dolg M.H. et al. // Theor. Chem. Acc. 1990. V. 77. № 2. P. 123. https://doi.org/10.1007/BF01114537
- 28. Perdew J.P., Burke K., Ernzerhof M. et al. // Phys. Rev. Lett. 1996. V. 77. № 18. P. 3865. https://doi.org/10.1103/PhysRevLett.77.3865
- 29. Lu T., Chen F. // Comput. Chem. 2012. V. 33. № 5. P. 580. https://doi.org/10.1002/jcc.22885
- 30. Mayer I. // Chem. Phys. Lett. 1983. V. 97. № 3. P. 270. https://doi.org/10.1016/0009-2614 (83)80005-0