- PII
- 10.31857/S0044457X24120133-1
- DOI
- 10.31857/S0044457X24120133
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 69 / Issue number 12
- Pages
- 1805-1814
- Abstract
- A new type of heterobimetallic ruthenium-containing complexes based on thiophene-, pyridineand phenanthroline-containing ligand has been obtained and investigated. In the studied complexes, ruthenium(II) is bound to the 1,10-phenanthroline moiety and has a marked effect on the optical properties of the complex. The second metal cation is coordinated on the pyridine residue within the phenanthroline ligand. The coordination of the second cation results in a significant quenching of luminescence as a result of redistribution of electron density on the LUMO. It is also shown that the removal of the bridging thiophene fragment from the ligand composition significantly reduces the nucleophilicity of the pyridine nitrogen atom, and the latter loses the ability to coordinate doubly charged cations.
- Keywords
- биметаллический комплекс имидазо[4,5-f][1,10]фенантролины комплекс рутения(II) комплексообразование люминесценция
- Date of publication
- 17.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 12
References
- 1. Balzani V., Bergamini G., Marchioni F. et al. // Coord. Chem. Rev. 2006. V. 250. № 11. P. 1254. https://doi.org/10.1016/j.ccr.2005.11.013
- 2. Andreiadis E.S., Chavarot-Kerlidou M., Fontecave M. et al. // Photochem. and Photobiol. 2011. V. 87. № 5. P. 946. https://doi.org/10.1111/j.1751-1097.2011.00966.x
- 3. Rau S., Zheng S. // Curr. Med. Chem. 2012. V. 12. № 3. P. 197. https://doi.org/10.2174/156802612799078946
- 4. Liu J., Zhang C., Rees T.W. et al. // Coord. Chem. Rev. 2018. V. 363. P. 17. https://doi.org/10.1016/j.ccr.2018.03.002
- 5. Kal’tenberg A.A., Bashilova A.D., Somov N.V. et al. // Russ. J. Inorg. Chem. 2023. V. 12. P. 1247. https://doi.org/10.1134/S0036023623700286
- 6. Alreja P., Kaur N. // RSC Adv. 2016. V. 6. № 28. P. 23169. https://doi.org/10.1039/C6RA00150E
- 7. Patra S., Boricha V.P., Sreenidhi K.R. et al. // Inorg. Chim. Acta. 2010. V. 363. P. 1639. https://doi.org/10.1016/j.ica.2010.01.003
- 8. Schmittel M., Lin H.W. // Angew. Chem., Int. Ed. 2007. V. 119. № 6. P. 911. https://doi.org/10.1002/ange.200603362
- 9. Sheet S.K., Sen B., Thounaojam R. et al. // Inorg. Chem. 2017. V. 56. № 3. P. 1249. https://doi.org/10.1021/acs.inorgchem.6b02343
- 10. Khatua S., Schmittel M. // Org. Lett. 2013. V. 15. № 17. P. 4422. https://doi.org/10.1021/ol401970n
- 11. Cheng F., He C., Ren M. et al. // Spectrochim. Acta, Part A. 2015. V. 136. P. 845. https://doi.org/10.1016/j.saa.2014.09.103
- 12. Cheng F., Tang N., Miao K. et al. // Z. Anorg. Allg. Chem. 2014. V. 640. № 8. P. 1816. https://doi.org/10.1002/zaac.201300662
- 13. Tokarev S.D., Botezatu A., Fedorov Y.V. et al. // Chem. Heterocycl. Compd. 2021. V. 57. P. 799. https://doi.org/10.1007/s10593-021-02983-722
- 14. Nasriddinov A., Tokarev S., Platonov V. et al. // Molecules. 2022. V. 27. P. 5058. https://doi.org/10.3390/molecules27165058
- 15. Lukovskaya E.V., Sotnikova Y.A., Bobyleva A.A. et al. // Mendeleev Commun. 2016. V. 3. № 26. P. 202. https://doi.org/10.1016/j.mencom.2016.04.007
- 16. Frisch M.J., Trucks G.W., Schlegel H.B. et al. Gaussian 16. Revision C.01, Inc., Wallingford CT, 2016.
- 17. Han G., Li G., Huang J. et al. // Nat. Commun. 2022. V. 13. № 1. P. 2288. https://doi.org/10.1038/s41467-022-29981-3
- 18. Halpin Y., Logtenberg H., Cleary L. et al. // Eur. J. Inorg. Chem. 2013. V. 24. P. 4291. https://doi.org/10.1002/ejic.201300366
- 19. Ioachim E., Medlycott E.A., Hanan G.S. et al. // Inorg. Chim. Acta. 2006. V. 359. № 3. P. 766. https://doi.org/10.1016/j.ica.2005.03.057
- 20. Monti F., Hahn U., Pavoni E. et al. // Polyhedron. 2014. V. 82. P. 122. https://doi.org/10.1016/j.poly.2014.05.030
- 21. Al-Ghezi B.S.M., Khasanov A.F., Starnovskaya E.S. et al. // Russ. J. Gen. Chem. 2023. V. 93. P. 285. https://doi.org/10.1134/S1070363223140372
- 22. Tang Y., Tehan E.C., Tao Z. et al. // Anal. Chem. 2003. V. 75. № 10. P. 2407. https://doi.org/10.1016/j.poly.2014.05.030
- 23. Tokarev S., Rumyantseva M., Nasriddinov A. et al. // Phys. Chem. Chem. Phys. 2020. V. 22. № 15. P. 8146. https://doi.org/10.1039/C9CP07016H
- 24. Li J., Lu C.H., Zhao B.B. et al. // Beilstein J. Org. Chem. 2008. V. 4. № 1. P. 46. https://doi.org/10.3762/bjoc.4.46
- 25. Juris A., Balzani V., Barigelletti F. et al. // Coord. Chem. Rev. 1988. V. 84. P. 85. https://doi.org/10.1016/0010-8545 (88)80032-8
- 26. Fedorov Y.V., Fedorova O.A., Andryukhina E.N. et al. // New J. Chem. 2003. V. 27. № 2. P. 280. https://doi.org/10.1039/B205305E
- 27. Reddy G.S., Hobgood R.T., Goldstein J.H. // J. Am. Chem. Soc. 1962. V. 84. № 3. P. 336. https://doi.org/10.1021/ja00862a004
- 28. Tian G., Han Y.Z., Yang Q. // Results Chem. 2023. V. 5. P. 100899. https://doi.org/10.1016/j.rechem.2023.100899
- 29. Han Y.Z., Tian G., Yang Q. // Inorg. Chem. Commun. 2023. V. 155. P. 111105. https://doi.org/10.1016/j.inoche.2023.111105
- 30. Roque III J.A., Cole H.D. et al. // J. Am. Chem. Soc. 2022. V. 144. № 18. P. 8317. https://doi.org/10.1021/jacs.2c02475
- 31. Cole H.D., Vali A. et al. // Inorg. Chem. 2024. V. 63. № 21. https://doi.org/10.1021/acs.inorgchem.3c04382
- 32. Bissell R.A., de Silva A.P., Gunaratne H.Q.N. et al. // Chem. Soc. Rev. 1992. V. 21. P. 187. https://doi.org/10.1039/CS9922100187
- 33. De Silva A.P., Gunaratne H.Q.N., Gunnlaugsson T. et al. // Chem. Rev. 1997. V. 97. P. 1515. https://doi.org/10.1021/cr960386p
- 34. Zhao Q., Li F., Huang C. // Chem. Soc. Rev. 2010. V. 39. P. 3007. https://doi.org/10.1039/B915340C