RAS Chemistry & Material ScienceЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

HYDROTHERMAL-MICROWAVE SYNTHESIS OF MnO/C COMPOSITE IN THE PRESENCE OF ASCORBIC ACID

PII
10.31857/S0044457X24120116-1
DOI
10.31857/S0044457X24120116
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 69 / Issue number 12
Pages
1785-1795
Abstract
For the first time composites based on manganese monoxide of cubic crystal system MnO/C were synthesized by hydrothermal-microwave treatment of aqueous solution of potassium permanganate with ascorbic acid and subsequent annealing of the precursor in an inert atmosphere at temperature of 500℃. It was found that the key parameter determining the features of composite formation is the molar ratio of the reaction mass components equal to Mn : C6H8O6 = 1 : (0.75-1.5). A mechanism of MnO/C composite formation is proposed. The maximum carbon content in the composite material is ≈ 3 wt. %. The main physicochemical characteristics of the synthesized composites were determined using the methods of X-ray phase and thermogravimetric analysis, Raman spectroscopy, scanning electron microscopy, low-temperature nitrogen adsorption. The study of the behavior of MnO/C as an anode material for a lithium-ion battery showed the efficiency of its use only at high current densities.
Keywords
углерод композит аскорбиновая кислота гидротермальный синтез анодный материал
Date of publication
15.12.2024
Year of publication
2024
Number of purchasers
0
Views
45

References

  1. 1. Li Y., Liu Y., Liu Y. et al. // J. Water Process Eng. 2022. V. 48. Р. 102864. https://doi.org/10.1016/j.jwpe.2022.102864
  2. 2. Журавлев В.Д., Халиуллин Ш.М., Ермакова Л.В. и др. // Журн. неорган. химии. 2020. Т. 65. № 10. С. 1317.
  3. 3. Иванова О.С., Теплоногова М.А., Япрынцев А.Д. и др. // Журн. неорган. химии. 2018. Т. 63. № 6. С. 678.
  4. 4. Li J., Wu C., Hou P. et al. // Biosens. Bioelectron. 2018. V. 102. P. 1. https://doi.org/10.1016/j.bios.2017.10.047
  5. 5. Zhang Z., Ji Y., Lin C., Tao L. // Mater. Sci. Eng., C: Mater. Biol. Appl. 2021. V. 131. Р. 112504. https://doi.org/10.1016/j.msec.2021.112504
  6. 6. Chowdhury A.-N., Azam M.S., Aktaruzzaman M., Rahim A. //J. Hazard. Mater. 2009. V 172. № 2-3. P. 1229. https://doi.org/10.1016/j.jhazmat.2009.07.129
  7. 7. Bigiani L., Zappa D., Maccato C. et al. // Appl. Surf. Sci. 2020. V. 512. P. 145667. https://doi.org/10.1016/j.apsusc.2020.145667
  8. 8. Liu R., Haruna S.A., Ali S. et al. // Spectrochim. Acta, Part A. 2022. V. 270. Р. 120855. https://doi.org/10.1016/j.saa.2022.120855
  9. 9. Chen J., Yang K., Wang J. et al. // J. Alloys Compd. 2020. V. 849. Р. 156637. https://doi.org/10.1016/j.jallcom.2020.156637
  10. 10. Wang J.-G., Zhang C., Jin D. et al. //J. Mater. Chem. A. 2015. V. 3.№ 26. P. 13699. https://doi.org/10.1039/C5TA02440D
  11. 11. He C., Li J., Zhao X. et al. // Appl. Surf. Sci. 2023. V. 614. Р. 156217. https://doi.org/10.1016/j.apsusc.2022.156217
  12. 12. Cui X., Wang Y., Chen Z. et al. // Electrochim. Acta. 2015. V. 180. P. 858. http://dx.doi.org/10.1016/j.electacta.2015.09.012
  13. 13. Xiang F., Hou W., Gu X. et al. // J. Alloys Compd. 2022. V. 897. Р. 163202. https://doi.org/10.1016/j.jallcom.2021.163202
  14. 14. Sheng L., Liang S., Wei T. et al. // Energy Storage Mater. 2018. V. 12. P. 94. https://doi.org/10.1016/j.ensm.2017.11.014
  15. 15. Zhan D., Yuan X., Xiang C. et al. // Sustain. Mater. Technol. 2021. V. 29. Р. e00322. https://doi.org/10.1016/j.susmat.2021.e00322
  16. 16. Xiao Z., Ning G., Ma X. et al. // Carbon. 2019. V. 142. P. 461. https://doi.org/10.1016/j.carbon.2018.10.039
  17. 17. Huang H.-W., Fan S.-S., Dong W. et al. // Appl. Surf. Sci. 2019. V. 473. P. 893. https://doi.org/10.1016/j.apsusc.2018.12.230
  18. 18. Wang S., Xing Y., Xiao C. et al. // J. Power Sources. 2016. V. 307. P. 11. http://dx.doi.org/10.1016/j.jpowsour.2015.12.125
  19. 19. Liu R., Chen X., Song H., Li C. // Appl. Surf. Sci. 2021. V. 545. Р. 148913. https://doi.org/10.1016/j.apsusc.2020.148913
  20. 20. Liu Z., Wang X., Lai F. et al. // Chem. Eng. J. Adv. 2021. V. 8. Р. 100146. https://doi.org/10.1016/j.ceja.2021.100146
  21. 21. Radhakanth S., Singhal R. // Chem. Eng. Sci. 2022. V. 265. № 6. Р. 118224. https://doi.org/10.1016/j.ces.2022.118224
  22. 22. Yan L., Zong L., Zhang Z. et al. // Carbon. 2022. V. 190. P. 402. https://doi.org/10.1016/j.carbon.2022.01.035
  23. 23. Li C., Wang S., Zhang G. et al. // Electrochim. Acta. 2015. V. 161. P. 32. http://dx.doi.org/10.1016/j.electacta.2015.02.097
  24. 24. Xiao L., Jia L., Zhao S. et al. //J. Electroanal. Chem. 2020. V. 858. Р. 113823. http://dx.doi.org/10.1016/j.jelechem.2020.113823
  25. 25. Zhu C., Han C., Saito G., Akiyama T. // J. Alloys Compd. 2016. V. 689. P. 931. http://dx.doi.org/10.1016/j.jallcom.2016.08.054
  26. 26. Li S., Yu D., Liu L. et al. // Chem. Eng. J. 2022. V. 430. Р. 132673. https://doi.org/10.1016/j.cej.2021.132673
  27. 27. Zhou H., Zhan Y., Guo F. et al. // Electrochim. Acta. 2021. V. 390. Р. 138817. https://doi.org/10.1016/j.electacta.2021.138817
  28. 28. Xiao Z., Yu Z., Ayu M. et al. // Chem. Eng. Sci. 2021. V. 245. Р. 116968. https://doi.org/10.1016/j.ces.2021.116968
  29. 29. Fu W., Liu T., Hou S. et al. // J. Alloys Compd. 2021. V. 861. Р. 157961. https://doi.org/10.1016/j.jallcom.2020.157961
  30. 30. Zhu L., Wang Y., Wang M. et al. // Carbon. 2021. V. 184. P. 706. https://doi.org/10.1016/j.carbon.2021.08.081
  31. 31. Luo J.-D., Zhang H., Qi X.-T. et al. // Carbon. 2020. V. 162. P. 36. https://doi.org/10.1016/j.carbon.2020.02.022
  32. 32. Gao M., Dong X., Wang K. et al. // J. Energy Storage. 2021. V. 33. Р. 102162. https://doi.org/10.1016/j.est.2020.102162
  33. 33. Li X., Xiong S., Li J. et al. // Chem. Eur. J. 2013. V. 19. № 34. P. 11310. https://doi.org/10.1002/chem.201203553
  34. 34. Sing K.S.W., Everett D.H., Haul R.A.W. et al. // Pure Appl. Chem. 1985. V. 57.№ 4. P. 603. http://dx.doi.org/10.1351/pac198557040603
  35. 35. Zhang S., Xu Y., Cheng X. et al. // J. Alloys Compd. 2023. V. 941. Р. 168847. https://doi.org/10.1016/j.jallcom.2023.168847
  36. 36. Wang J.-G., Liu H., Liu H. et al. // Chem. Eng. J. 2017. V. 328. P. 591. http://dx.doi.org/10.1016/j.cej.2017.07.039
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library