- Код статьи
- 10.31857/S0044457X24120116-1
- DOI
- 10.31857/S0044457X24120116
- Тип публикации
- Статья
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том 69 / Номер выпуска 12
- Страницы
- 1785-1795
- Аннотация
- Гидротермально-микроволновой обработкой водного раствора перманганата калия с аскорбиновой кислотой и последующим отжигом прекурсора в инертной атмосфере при температуре 500℃ впервые синтезированы композиты на основе монооксида марганца кубической сингонии МnO/С. Установлено, что ключевым параметром, определяющим особенности формирования композита, является молярное соотношение компонентов реакционной массы Мn : C6H8O6 = 1 : (0.75-1.5). Предложен механизм образования композита MnO/C. Максимальное содержание углерода в композитном материале составляет ∼3 мас. %. Методами рентгенофазового и термогравиметрического анализа, КР-спектроскопии, сканирующей электронной микроскопии и низкотемпературной адсорбции азота определены основные физико-химические характеристики синтезированных композитов. Исследование поведения МnO/С в качестве анодного материала литий-ионного источника тока показало эффективность его использования только при высоких плотностях тока.
- Ключевые слова
- углерод композит аскорбиновая кислота гидротермальный синтез анодный материал
- Дата публикации
- 17.09.2025
- Год выхода
- 2025
- Всего подписок
- 0
- Всего просмотров
- 10
Библиография
- 1. Li Y., Liu Y., Liu Y. et al. // J. Water Process Eng. 2022. V. 48. Р. 102864. https://doi.org/10.1016/j.jwpe.2022.102864
- 2. Журавлев В.Д., Халиуллин Ш.М., Ермакова Л.В. и др. // Журн. неорган. химии. 2020. Т. 65. № 10. С. 1317.
- 3. Иванова О.С., Теплоногова М.А., Япрынцев А.Д. и др. // Журн. неорган. химии. 2018. Т. 63. № 6. С. 678.
- 4. Li J., Wu C., Hou P. et al. // Biosens. Bioelectron. 2018. V. 102. P. 1. https://doi.org/10.1016/j.bios.2017.10.047
- 5. Zhang Z., Ji Y., Lin C., Tao L. // Mater. Sci. Eng., C: Mater. Biol. Appl. 2021. V. 131. Р. 112504. https://doi.org/10.1016/j.msec.2021.112504
- 6. Chowdhury A.-N., Azam M.S., Aktaruzzaman M., Rahim A. //J. Hazard. Mater. 2009. V 172. № 2-3. P. 1229. https://doi.org/10.1016/j.jhazmat.2009.07.129
- 7. Bigiani L., Zappa D., Maccato C. et al. // Appl. Surf. Sci. 2020. V. 512. P. 145667. https://doi.org/10.1016/j.apsusc.2020.145667
- 8. Liu R., Haruna S.A., Ali S. et al. // Spectrochim. Acta, Part A. 2022. V. 270. Р. 120855. https://doi.org/10.1016/j.saa.2022.120855
- 9. Chen J., Yang K., Wang J. et al. // J. Alloys Compd. 2020. V. 849. Р. 156637. https://doi.org/10.1016/j.jallcom.2020.156637
- 10. Wang J.-G., Zhang C., Jin D. et al. //J. Mater. Chem. A. 2015. V. 3.№ 26. P. 13699. https://doi.org/10.1039/C5TA02440D
- 11. He C., Li J., Zhao X. et al. // Appl. Surf. Sci. 2023. V. 614. Р. 156217. https://doi.org/10.1016/j.apsusc.2022.156217
- 12. Cui X., Wang Y., Chen Z. et al. // Electrochim. Acta. 2015. V. 180. P. 858. http://dx.doi.org/10.1016/j.electacta.2015.09.012
- 13. Xiang F., Hou W., Gu X. et al. // J. Alloys Compd. 2022. V. 897. Р. 163202. https://doi.org/10.1016/j.jallcom.2021.163202
- 14. Sheng L., Liang S., Wei T. et al. // Energy Storage Mater. 2018. V. 12. P. 94. https://doi.org/10.1016/j.ensm.2017.11.014
- 15. Zhan D., Yuan X., Xiang C. et al. // Sustain. Mater. Technol. 2021. V. 29. Р. e00322. https://doi.org/10.1016/j.susmat.2021.e00322
- 16. Xiao Z., Ning G., Ma X. et al. // Carbon. 2019. V. 142. P. 461. https://doi.org/10.1016/j.carbon.2018.10.039
- 17. Huang H.-W., Fan S.-S., Dong W. et al. // Appl. Surf. Sci. 2019. V. 473. P. 893. https://doi.org/10.1016/j.apsusc.2018.12.230
- 18. Wang S., Xing Y., Xiao C. et al. // J. Power Sources. 2016. V. 307. P. 11. http://dx.doi.org/10.1016/j.jpowsour.2015.12.125
- 19. Liu R., Chen X., Song H., Li C. // Appl. Surf. Sci. 2021. V. 545. Р. 148913. https://doi.org/10.1016/j.apsusc.2020.148913
- 20. Liu Z., Wang X., Lai F. et al. // Chem. Eng. J. Adv. 2021. V. 8. Р. 100146. https://doi.org/10.1016/j.ceja.2021.100146
- 21. Radhakanth S., Singhal R. // Chem. Eng. Sci. 2022. V. 265. № 6. Р. 118224. https://doi.org/10.1016/j.ces.2022.118224
- 22. Yan L., Zong L., Zhang Z. et al. // Carbon. 2022. V. 190. P. 402. https://doi.org/10.1016/j.carbon.2022.01.035
- 23. Li C., Wang S., Zhang G. et al. // Electrochim. Acta. 2015. V. 161. P. 32. http://dx.doi.org/10.1016/j.electacta.2015.02.097
- 24. Xiao L., Jia L., Zhao S. et al. //J. Electroanal. Chem. 2020. V. 858. Р. 113823. http://dx.doi.org/10.1016/j.jelechem.2020.113823
- 25. Zhu C., Han C., Saito G., Akiyama T. // J. Alloys Compd. 2016. V. 689. P. 931. http://dx.doi.org/10.1016/j.jallcom.2016.08.054
- 26. Li S., Yu D., Liu L. et al. // Chem. Eng. J. 2022. V. 430. Р. 132673. https://doi.org/10.1016/j.cej.2021.132673
- 27. Zhou H., Zhan Y., Guo F. et al. // Electrochim. Acta. 2021. V. 390. Р. 138817. https://doi.org/10.1016/j.electacta.2021.138817
- 28. Xiao Z., Yu Z., Ayu M. et al. // Chem. Eng. Sci. 2021. V. 245. Р. 116968. https://doi.org/10.1016/j.ces.2021.116968
- 29. Fu W., Liu T., Hou S. et al. // J. Alloys Compd. 2021. V. 861. Р. 157961. https://doi.org/10.1016/j.jallcom.2020.157961
- 30. Zhu L., Wang Y., Wang M. et al. // Carbon. 2021. V. 184. P. 706. https://doi.org/10.1016/j.carbon.2021.08.081
- 31. Luo J.-D., Zhang H., Qi X.-T. et al. // Carbon. 2020. V. 162. P. 36. https://doi.org/10.1016/j.carbon.2020.02.022
- 32. Gao M., Dong X., Wang K. et al. // J. Energy Storage. 2021. V. 33. Р. 102162. https://doi.org/10.1016/j.est.2020.102162
- 33. Li X., Xiong S., Li J. et al. // Chem. Eur. J. 2013. V. 19. № 34. P. 11310. https://doi.org/10.1002/chem.201203553
- 34. Sing K.S.W., Everett D.H., Haul R.A.W. et al. // Pure Appl. Chem. 1985. V. 57.№ 4. P. 603. http://dx.doi.org/10.1351/pac198557040603
- 35. Zhang S., Xu Y., Cheng X. et al. // J. Alloys Compd. 2023. V. 941. Р. 168847. https://doi.org/10.1016/j.jallcom.2023.168847
- 36. Wang J.-G., Liu H., Liu H. et al. // Chem. Eng. J. 2017. V. 328. P. 591. http://dx.doi.org/10.1016/j.cej.2017.07.039