- PII
- 10.31857/S0044457X24120109-1
- DOI
- 10.31857/S0044457X24120109
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 69 / Issue number 12
- Pages
- 1774-1784
- Abstract
- The article is devoted to the study of synthesis conditions and structure details of cationand anion-deficient scheelite-releted solid solutions Sr1-1.5x-yBix+yФ0.5xMo1-yVyO4 and Sr1-1.5xBixФ0.5xMo1-yVyO4-d and their electrical conductive properties. For both series the homogeneity ranges were determined and the structural features were studied by X-ray powdwr diffraction and Raman spectroscopy. The morphology of ceramic samples was studied by scanning electron microscopy. The total electrical conductivity of the compounds was measured by impedance spectroscopy in the temperature range 400-650℃. To estimate the contribution of the electron and proton components to the total electrical conductivity of solid solutions, the electrical conductive characteristics were measured in a humid atmosphere and at various partial pressures of oxygen. The Arrhenius plots of the electrical conductivity are analyzed.
- Keywords
- шеелит висмут ванадий электропроводность рамановская спектроскопия
- Date of publication
- 17.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 13
References
- 1. Wang Y., Ma J., Tao J. et al. // Ceram. Int. 2007. V. 33. № 4. P. 693. https://doi.org/i0.i0i6/j.ceramint.2005.ii.003
- 2. Nikl M., Bohacek P., Mihokova E. et al. // J. Lumin. 2000. V. 87. P. ii36. https://doi.org/i0.i0i6/S0022-23i3 (99)00569-4
- 3. Errandonea D., Manjon F.J. // Prog. Mater Sci. 2008. V. 53. № 4. P. 7ii. https://doi.org/i0.i0i6/j.pmatsci.2008.02.00i
- 4. Sczancoski J.C., Cavalcante L.S., Joya M.R. et al. // Chem. Eng. J. 2008. V. i40. № i. P. 632. https://doi.org/i0.i0i6/j.cej.2008.0i.0i5
- 5. Salavati-Niasari M., Shoshtari-Yeganeh B., Bazarganipour M. // Superlattices Microstruct. 2008. V. 58. P. 20. https://doi.org/i0.i0i6/j.spmi.20i3.02.003
- 6. Noori E., Bazarganipour M., Salavati-Niasari M. etal.//J. Cluster Sci. 20i3.V.24.№4.P. ii7i. https://doi.org/i0.i007/si0876-0i3-0607-y
- 7. Sujatha R.A., Flower N.A.L., Vinitha G. et al. // Appl. Surf. Sci. 20i9. V. 490. P. 260. https://doi.org/i0.i0i6/j.apsusc.20i9.06.086
- 8. Bi J., Wu L., Zhang Y. et al. // Appl. Catal., B. 2009. V. 9i. № i. P. i35. https://doi.org/i0.i0i6/j.apcatb.2009.05.0i6
- 9. Thongtem T., Kungwankunakorn S., Kuntalue B. et al. // J. Alloys Compd. 20i0. V. 506. № i. P. 475. https://doi.org/i0.i0i6/j.jallcom.20i0.07.033
- 10. Li Z., Wang J., Zhang H. et al. // J. Cryst. Growth. 20ii. V. 3i8. № i. P. 679. https://doi.org/i0.i0i6/j.jcrysgro.20i0.i0.207
- 11. Cavalcante L.S., Sczancoski J.C., Batista N.C. et al. // Adv. Powder Technol. 20i3. V. 24. № i. P. 344. https://doi.org/i0.i0i6/j.apt.20i2.08.007
- 12. Errandonea D., Kumar R.S., Ma X. et al. // J. Solid State Chem. 2008. V. i8i. № 2. P. 355. https://doi.org/i0.i0i6/j.jssc.2007.i2.0i0
- 13. Luo J., Bai X., LiQ. et al. // Nano Energy. 2019. V. 66. P. 104187. https://doi.org/10.1016/j.nanoen.2019.104187
- 14. Elakkiya V., Sumathi S. // Mater. Lett. 2019. V. 263. P. 127246. https://doi.org/10.1016/j.matlet.2019.127246
- 15. Benchikhi M., Azzouzi A., Hattaf R. et al. // Opt. Mater. 2022. V. 132. P. 112802. https://doi.org/10.1016/j.optmat.2022.112802
- 16. Cui J., Li Y., Li H. et al. // Microchem. J. 2022. V. 181. P. 107736. https://doi.org/10.1016/j.microc.2022.107736
- 17. Guo J., Randall C.A., Zhou D. et al. // J. Eur. Ceram. Soc. 2015. V. 35. № 16. P. 4459 https://doi.org/10.1016/j.jeurceramsoc.2015.08.020
- 18. Esaka T. // Solid State Ionics. 2000. V. 136. P. 1. https://doi.org/10.1016/S0167-2738 (00)00377-5
- 19. Yang X., Wang Y., Wang N. et al. // J. Mater. Sci. Mater. Electron. 2014. V. 25. P. 3996. https://doi.org/10.1007/s10854-014-2119-4
- 20. Jena P., Nallamuthu N., Satyanarayana N. et al. // TechConnect Briefs. 2012. V. 4. P. 176.
- 21. Sleight J.A.W., Aykan K., Rogers D.B. //J. Solid State Chem. 1975. V. 13. № 3. P. 231. https://doi.org/10.1016/0022-4596 (75)90124-3
- 22. Wang Y., Xu H., Shao C. et al. // Appl. Surf. Sci. 2017. V. 392. P. 649. https://doi.org/10.1016/j.apsusc.2016.09.097
- 23. Mikhaylovskaya Z.A., Pankrushina E.A., Komleva E.V. et al. // Mater. Sci. Eng. B. 2022. V. 281. P. 115741. https://doi.org/10.1016/j.mseb.2022.115741
- 24. Mikhaylovskaya Z.A., Buyanova E.S., Petrova S.A. et al. // Chim. Techno Acta. 2021. V. 8. № 2. P. 20218204. https://doi.org/10.15826/chimtech.2021.8.2.04
- 25. Никитина А.А., Михайловская З.А., Князев Н.С. и др. // Сб. статей Междунар. молодежн. науч. конф. “Физика. Технологии. Инновации”. Екатеринбург: УрФУ, 2020. С. 213.
- 26. Климова А.В., Михайловская З.А., Буянова Е.С., Петрова С.А. // Тр. Кольского научного центра РАН. Сер. Технические науки. 2023. Т. 14. № 3. С. 176. https://doi.org/10.37614/2949-1215.2023.14.3.032
- 27. High-Performance Scientific Instruments and Solutions for Molecular and Materials Research, as well as for Industrial and Applied Analysis. Bruker AXS GmbH. Karlsruhe. 2017.
- 28. PDF-4+ JCPDS International Centre for Diffraction Data. Newtown Square. 2016.
- 29. Laugier J., Bochu B. Basic Demonstration of CELREF Unit-Cell refinement software on a multiphase system. Collaborative Computational. Project № 14. London. 2003.
- 30. Shannon R.D. // Acta Crystallogr., Sect. A: Found. 1976. V. 32. № 5. Р. 751. https://doi.org/10.1107/S0567739476001551
- 31. Vali R. // Comp. Mater. Sci. 2011. V. 50. № 9. Р. 2683. https://doi.org/10.1016/j.commatsci.2011.04.018
- 32. Hardcastle F.D., Wachs I.E. //J. Phys. Chem. 1995. V. 95. № 26. Р. 10763. https://doi.org/10.1021/j100179a045
- 33. Петров К.И., Полозникова М.Э., Шарипов Х.Т., Фомичев В.В. Колебательные спектры молибдатов и вольфраматов. Ташкент: Фан, 1990. 136 с.
- 34. Irvine J.T.S., Sinclair D.C., West A.R. // Adv. Mater. 1990. V. 2. № 3. P. 132. https://doi.org/10.1002/adma.19900020304
- 35. Hoffart L., Heider U., Jorissen L. et al. // Solid State Ionics. 1994. V. 72. № 2. P. 195. https://doi.org/10.1016/0167-2738 (94)90146-5
- 36. Vinke I.C., Diepgrond J., Boukamp B.A. et al. // Solid State Ionics. 1992. V 57. № 1-2. P 83. https://doi.org/10.1016/0167-2738 (92)90067-Y
- 37. Ayame A., Uchida K., Iwataya M. et al. // Appl. Catal., A. 2002. V. 227. № 1. P. 7. https://doi.org/10.1016/S0926-860X (01)00918-8
- 38. Friedric M., Karthe W. // Phys. Status Solidi B. 1980. V. 97. № 1. P. 113. https://doi.org/10.1002/pssb.2220970111
- 39. Brandao A.D., Nasani N., Yaremchenko A.A. et al. // Int. J. Hydrogen Energy. 2018. V. 43. № 40. P. 18682. https://doi.org/10.1016/j.ijhydene.2018.05.146