- PII
- 10.31857/S0044457X24120042-1
- DOI
- 10.31857/S0044457X24120042
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 69 / Issue number 12
- Pages
- 1705-1720
- Abstract
- The dehydration-rehydration process of layered hydroxides is an example of a reversible chemical reaction involving rearrangement of the crystal structure. Products of thermal decomposition of layered rare earth hydroxides are known to interact under certain conditions with aqueous salt solutions and restore their original layered structure. In the present work, the effect of the temperature and duration of thermal treatment of the layered rare earth hydroxychlorides at 100–1150℃ on the interaction of the obtained products with aqueous sodium chloride solution was systematically studied for the first time. The main stages of the thermal decomposition of layered rare earth hydroxychlorideswere determined by the thermogravimetric analysis. Powder Xray diffraction analysis and energy-dispersive X-ray spectroscopy were used to determine the phase and the chemical composition of the products of thermal treatment and subsequent rehydratation of the layered hydroxides. It was shown that the presence of the rare earth oxychloride phase in the products of thermal decomposition was a critical factor for the recovery of the layered structure.
- Keywords
- эффект памяти термическая стабильность слоистые гидроксиды РЗЭ отжиг топохимические реакции
- Date of publication
- 15.12.2024
- Year of publication
- 2024
- Number of purchasers
- 0
- Views
- 52
References
- 1. Huang X., Ackland G.J., Rabe K.M. // Nat. Mater. 2003. V. 2. № 5. P. 307. https://doi.org/10.1038/nmat884
- 2. Selvidge M., Miaoulis I.N. // Sol. Energy. 1990. V. 44. № 3. P. 173. https://doi.org/10.1016/0038-092X (90)90081-M
- 3. Leguy A.M.A., Hu Y., Campoy-Quiles M. et al. // Chem. Mater. 2015. V. 27. № 9. P. 3397. https://doi.org/10.1021/acs.chemmater.5b00660
- 4. Stoica G., Perez-Ramrez J. // Chem. Mater. 2007. V. 19. № 19. P. 4783. https://doi.org/10.1021/cm071351g
- 5. Knorpp A.J., Allegri P., Huangfu S. et al. // Inorg. Chem. 2023. V. 62. № 12. P. 4999. https://doi.org/10.1021/acs.inorgchem.3c00179
- 6. Mascolo G., Mascolo M.C. // Microporous Mesoporous Mater. 2015. V. 214. P. 246. https://doi.org/10.1016/j.micromeso.2015.03.024
- 7. Perez-Ramrez J., Abello S., Van Der Pers N.M. // Chem. -AEur.J. 2007. V. 13. № 3. P. 870. https://doi.org/10.1002/chem.200600767
- 8. Jin L., Zhou X., Wang F. et al. // Nat.Commun. 2022. V. 13. № 1. P. 6093. https://doi.org/10.1038/s41467-022-33912-7
- 9. Lee S.S., Lee B. Il, Kim S.J. et al. // Inorg. Chem. 2012. V. 51. № 19. P. 10222. https://doi.org/10.1021/ic301143r
- 10. Lee B.Il, Byeon S.H. // Bull. Korean Chem. Soc. 2015. V. 36.№ 3.P. 804. https://doi.org/10.1002/bkcs.10149
- 11. Rojas R. // Layered double hydroxides applications as sorbents for environmental remediation. Hydroxides Synth. Types Appl. Nova Science Publishers, Inc., 2012.
- 12. Abello S., Medina F., Tichit D. et al. // Chem. - A Eur. J. 2005. V. 11. № 2. P. 728. https://doi.org/10.1002/chem.200400409
- 13. Dubnova L., Danhel R., Meinhardova V. et al. // Front. Chem. 2022. V. 9. № January. P. 1. https://doi.org/10.3389/fchem.2021.803764
- 14. Yuan Z., Bak S.M., Li P. et al. // ACS Energy Lett. 2019. V. 4. № 6. P. 1412. https://doi.org/10.1021/acsenergylett.9b00867
- 15. Davila V., Lima E., Bulbulian S. et al. // Microporous Mesoporous Mater. 2008. V. 107. № 3. P. 240. https://doi.org/10.1016/j.micromeso.2007.03.013
- 16. Mascolo G., Marino O. // Mineral. Mag. 1980. V. 43. № 329. P. 619. https://doi.org/10.1180/minmag.1980.043.329.09
- 17. Япрынцев А.Д., Баранчиков А.Е., Иванов В.К. // Успехи химии. 2020. V. 89. № 6. P. 629. https://doi.org/https://doi.org/10.1070/RCR4920?locatt=label:RUSSIAN
- 18. Lee B.Il, Jeong H., Byeon S.H. // Inorg. Chem. 2014. V. 53. № 10. P. 5212. https://doi.org/10.1021/ic500403v
- 19. Aksel’rud N.V. // Russ. Chem. Rev. 1963. V. 32. № 7. P. 353. https://doi.org/10.1070/RC1963v032n07ABEH001348
- 20. Marchi A.J., Apestegua C.R. // Appl. Clay Sci. 1998. V. 13.№ 1. P. 35. https://doi.org/10.1016/S0169-1317 (98)00011-8
- 21. Kowalik P., Konkol M., Kondracka M. et al. // Appl. Catal., A: Gen. 2013. V 464-465. P 339. https://doi.org/10.1016/j.apcata.2013.05.048
- 22. Kooli F., Depege C., Ennaqadi A. et al. // Clays Clay Miner. 1997. V. 45. № 1. P. 92. https://doi.org/10.1346/CCMN.1997.0450111
- 23. Hibino T., Tsunashima A. // Chem. Mater. 1998. V. 10.№ 12. P. 4055. https://doi.org/10.1021/cm980478q
- 24. Zavoianu R., Brjega R., Angelescu E. et al. // Comptes Rendus Chim. 2018. V. 21. № 3-4. P. 318. https://doi.org/10.1016/j.crci.2017.07.002
- 25. Rocha J., Del Arco M., Rives V. et al. // J. Mater. Chem. 1999. V. 9. № 10. P. 2499. https://doi.org/10.1039/a903231b
- 26. Golovin S.N., Yapryntsev M.N., Lebedeva O.E. // J. Aust. Ceram. Soc. 2022. V. 58. № 5. P. 1615. https://doi.org/10.1007/s41779-022-00798-z
- 27. Tanaka K., Okawa H., Fujiwara T. et al. // Jpn. J. Appl. Phys. 2015. V. 54. № 7S1. P. 07HE08. https://doi.org/10.7567/JJAP.54.07HE08
- 28. Teplonogova M.A., Kozlova A.A., Yapryntsev A.D. et al. // Molecules. 2024. V. 29. № 7. P. 1634. https://doi.org/10.3390/molecules29071634
- 29. Geng F., Matsushita Y., Ma R. et al. // J. Am. Chem. Soc. 2008. V. 130. № 48. P. 16344. https://doi.org/10.1021/ja807050e
- 30. Feng Z., Xiao D., Liu Z. et al. // J. Phys. Chem. C. 2021. V. 125. № 13. P. 7251. https://doi.org/10.1021/acs.jpcc.1c00086
- 31. Geng F., Matsushita Y., Ma R. et al. // J. Am. Chem. Soc. 2008. V. 130. № 48. P. 16344. https://doi.org/10.1021/ja807050e
- 32. Nakamoto K. // Infrared and raman Spectra of inorganic and coordination compounds. Part A. Wiley, 2009. http://library1.nida.ac.th/termpaper6/sd/2554/ 19755.pdf
- 33. Meyer G., Staffel T. // ZAAC - J. Inorg. Gen. Chem. 1986. V. 532. № 1. P. 31. https://doi.org/10.1002/zaac.19865320106
- 34. Holsa J., Lahtinen M., Lastusaari M. et al. // J. Solid State Chem. 2002. V. 165. № 1. P. 48. https://doi.org/10.1006/jssc.2001.9491
- 35. Benhiti R., Bahnariu T., Carja G. et al. // Nano-Structures and Nano-Objects. 2023. V. 36. № May. P. 101043. https://doi.org/10.1016/j.nanoso.2023.101043