RAS Chemistry & Material ScienceЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

LAYERED EUROPIUM AND YTTRIUM HYDROXYCHLORIDES: THERMAL DECOMPOSITION AND REHYDRATION

PII
10.31857/S0044457X24120042-1
DOI
10.31857/S0044457X24120042
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 69 / Issue number 12
Pages
1705-1720
Abstract
The dehydration-rehydration process of layered hydroxides is an example of a reversible chemical reaction involving rearrangement of the crystal structure. Products of thermal decomposition of layered rare earth hydroxides are known to interact under certain conditions with aqueous salt solutions and restore their original layered structure. In the present work, the effect of the temperature and duration of thermal treatment of the layered rare earth hydroxychlorides at 100–1150℃ on the interaction of the obtained products with aqueous sodium chloride solution was systematically studied for the first time. The main stages of the thermal decomposition of layered rare earth hydroxychlorideswere determined by the thermogravimetric analysis. Powder Xray diffraction analysis and energy-dispersive X-ray spectroscopy were used to determine the phase and the chemical composition of the products of thermal treatment and subsequent rehydratation of the layered hydroxides. It was shown that the presence of the rare earth oxychloride phase in the products of thermal decomposition was a critical factor for the recovery of the layered structure.
Keywords
эффект памяти термическая стабильность слоистые гидроксиды РЗЭ отжиг топохимические реакции
Date of publication
15.12.2024
Year of publication
2024
Number of purchasers
0
Views
52

References

  1. 1. Huang X., Ackland G.J., Rabe K.M. // Nat. Mater. 2003. V. 2. № 5. P. 307. https://doi.org/10.1038/nmat884
  2. 2. Selvidge M., Miaoulis I.N. // Sol. Energy. 1990. V. 44. № 3. P. 173. https://doi.org/10.1016/0038-092X (90)90081-M
  3. 3. Leguy A.M.A., Hu Y., Campoy-Quiles M. et al. // Chem. Mater. 2015. V. 27. № 9. P. 3397. https://doi.org/10.1021/acs.chemmater.5b00660
  4. 4. Stoica G., Perez-Ramrez J. // Chem. Mater. 2007. V. 19. № 19. P. 4783. https://doi.org/10.1021/cm071351g
  5. 5. Knorpp A.J., Allegri P., Huangfu S. et al. // Inorg. Chem. 2023. V. 62. № 12. P. 4999. https://doi.org/10.1021/acs.inorgchem.3c00179
  6. 6. Mascolo G., Mascolo M.C. // Microporous Mesoporous Mater. 2015. V. 214. P. 246. https://doi.org/10.1016/j.micromeso.2015.03.024
  7. 7. Perez-Ramrez J., Abello S., Van Der Pers N.M. // Chem. -AEur.J. 2007. V. 13. № 3. P. 870. https://doi.org/10.1002/chem.200600767
  8. 8. Jin L., Zhou X., Wang F. et al. // Nat.Commun. 2022. V. 13. № 1. P. 6093. https://doi.org/10.1038/s41467-022-33912-7
  9. 9. Lee S.S., Lee B. Il, Kim S.J. et al. // Inorg. Chem. 2012. V. 51. № 19. P. 10222. https://doi.org/10.1021/ic301143r
  10. 10. Lee B.Il, Byeon S.H. // Bull. Korean Chem. Soc. 2015. V. 36.№ 3.P. 804. https://doi.org/10.1002/bkcs.10149
  11. 11. Rojas R. // Layered double hydroxides applications as sorbents for environmental remediation. Hydroxides Synth. Types Appl. Nova Science Publishers, Inc., 2012.
  12. 12. Abello S., Medina F., Tichit D. et al. // Chem. - A Eur. J. 2005. V. 11. № 2. P. 728. https://doi.org/10.1002/chem.200400409
  13. 13. Dubnova L., Danhel R., Meinhardova V. et al. // Front. Chem. 2022. V. 9. № January. P. 1. https://doi.org/10.3389/fchem.2021.803764
  14. 14. Yuan Z., Bak S.M., Li P. et al. // ACS Energy Lett. 2019. V. 4. № 6. P. 1412. https://doi.org/10.1021/acsenergylett.9b00867
  15. 15. Davila V., Lima E., Bulbulian S. et al. // Microporous Mesoporous Mater. 2008. V. 107. № 3. P. 240. https://doi.org/10.1016/j.micromeso.2007.03.013
  16. 16. Mascolo G., Marino O. // Mineral. Mag. 1980. V. 43. № 329. P. 619. https://doi.org/10.1180/minmag.1980.043.329.09
  17. 17. Япрынцев А.Д., Баранчиков А.Е., Иванов В.К. // Успехи химии. 2020. V. 89. № 6. P. 629. https://doi.org/https://doi.org/10.1070/RCR4920?locatt=label:RUSSIAN
  18. 18. Lee B.Il, Jeong H., Byeon S.H. // Inorg. Chem. 2014. V. 53. № 10. P. 5212. https://doi.org/10.1021/ic500403v
  19. 19. Aksel’rud N.V. // Russ. Chem. Rev. 1963. V. 32. № 7. P. 353. https://doi.org/10.1070/RC1963v032n07ABEH001348
  20. 20. Marchi A.J., Apestegua C.R. // Appl. Clay Sci. 1998. V. 13.№ 1. P. 35. https://doi.org/10.1016/S0169-1317 (98)00011-8
  21. 21. Kowalik P., Konkol M., Kondracka M. et al. // Appl. Catal., A: Gen. 2013. V 464-465. P 339. https://doi.org/10.1016/j.apcata.2013.05.048
  22. 22. Kooli F., Depege C., Ennaqadi A. et al. // Clays Clay Miner. 1997. V. 45. № 1. P. 92. https://doi.org/10.1346/CCMN.1997.0450111
  23. 23. Hibino T., Tsunashima A. // Chem. Mater. 1998. V. 10.№ 12. P. 4055. https://doi.org/10.1021/cm980478q
  24. 24. Zavoianu R., Brjega R., Angelescu E. et al. // Comptes Rendus Chim. 2018. V. 21. № 3-4. P. 318. https://doi.org/10.1016/j.crci.2017.07.002
  25. 25. Rocha J., Del Arco M., Rives V. et al. // J. Mater. Chem. 1999. V. 9. № 10. P. 2499. https://doi.org/10.1039/a903231b
  26. 26. Golovin S.N., Yapryntsev M.N., Lebedeva O.E. // J. Aust. Ceram. Soc. 2022. V. 58. № 5. P. 1615. https://doi.org/10.1007/s41779-022-00798-z
  27. 27. Tanaka K., Okawa H., Fujiwara T. et al. // Jpn. J. Appl. Phys. 2015. V. 54. № 7S1. P. 07HE08. https://doi.org/10.7567/JJAP.54.07HE08
  28. 28. Teplonogova M.A., Kozlova A.A., Yapryntsev A.D. et al. // Molecules. 2024. V. 29. № 7. P. 1634. https://doi.org/10.3390/molecules29071634
  29. 29. Geng F., Matsushita Y., Ma R. et al. // J. Am. Chem. Soc. 2008. V. 130. № 48. P. 16344. https://doi.org/10.1021/ja807050e
  30. 30. Feng Z., Xiao D., Liu Z. et al. // J. Phys. Chem. C. 2021. V. 125. № 13. P. 7251. https://doi.org/10.1021/acs.jpcc.1c00086
  31. 31. Geng F., Matsushita Y., Ma R. et al. // J. Am. Chem. Soc. 2008. V. 130. № 48. P. 16344. https://doi.org/10.1021/ja807050e
  32. 32. Nakamoto K. // Infrared and raman Spectra of inorganic and coordination compounds. Part A. Wiley, 2009. http://library1.nida.ac.th/termpaper6/sd/2554/ 19755.pdf
  33. 33. Meyer G., Staffel T. // ZAAC - J. Inorg. Gen. Chem. 1986. V. 532. № 1. P. 31. https://doi.org/10.1002/zaac.19865320106
  34. 34. Holsa J., Lahtinen M., Lastusaari M. et al. // J. Solid State Chem. 2002. V. 165. № 1. P. 48. https://doi.org/10.1006/jssc.2001.9491
  35. 35. Benhiti R., Bahnariu T., Carja G. et al. // Nano-Structures and Nano-Objects. 2023. V. 36. № May. P. 101043. https://doi.org/10.1016/j.nanoso.2023.101043
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library