ОХНМЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

СЛОИСТЫЕ ГИДРОКСОХЛОРИДЫ ЕВРОПИЯ И ИТТРИЯ: ТЕРМИЧЕСКОЕ РАЗЛОЖЕНИЕ И РЕГИДРАТАЦИЯ

Код статьи
10.31857/S0044457X24120042-1
DOI
10.31857/S0044457X24120042
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 69 / Номер выпуска 12
Страницы
1705-1720
Аннотация
Процесс дегидратации-регидратации слоистых гидроксидов является примером обратимой химической реакции, происходящей с перестройкой кристаллической структуры. Известно, что продукты термического разложения слоистых гидроксидов редкоземельных элементов (РЗЭ) в определенных условиях способны взаимодействовать с водными растворами солей и восстанавливать исходную слоистую структуру. В настоящей работе впервые изучено влияние условий (температуры и продолжительности) отжига слоистых гидроксохлоридов РЗЭ при 100—1150℃ на последующее взаимодействие продуктов термического разложения с водным раствором хлорида натрия с восстановлением слоистой структуры. Методом термогравиметрического анализа определены основные стадии термического разложения слоистых гидроксохлоридов РЗЭ. С помощью рентгенофазового анализа и рентгеноспектрального микрокроанализа установлен фазовый и элементный состав продуктов отжига слоистых гидроксидов и продуктов последующего взаимодействия с раствором NaCl. Показано, что для восстановления слоистой структуры критическим фактором является присутствие фазы оксохлорида РЗЭ в продукте термообработки.
Ключевые слова
эффект памяти термическая стабильность слоистые гидроксиды РЗЭ отжиг топохимические реакции
Дата публикации
17.09.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
10

Библиография

  1. 1. Huang X., Ackland G.J., Rabe K.M. // Nat. Mater. 2003. V. 2. № 5. P. 307. https://doi.org/10.1038/nmat884
  2. 2. Selvidge M., Miaoulis I.N. // Sol. Energy. 1990. V. 44. № 3. P. 173. https://doi.org/10.1016/0038-092X (90)90081-M
  3. 3. Leguy A.M.A., Hu Y., Campoy-Quiles M. et al. // Chem. Mater. 2015. V. 27. № 9. P. 3397. https://doi.org/10.1021/acs.chemmater.5b00660
  4. 4. Stoica G., Perez-Ramrez J. // Chem. Mater. 2007. V. 19. № 19. P. 4783. https://doi.org/10.1021/cm071351g
  5. 5. Knorpp A.J., Allegri P., Huangfu S. et al. // Inorg. Chem. 2023. V. 62. № 12. P. 4999. https://doi.org/10.1021/acs.inorgchem.3c00179
  6. 6. Mascolo G., Mascolo M.C. // Microporous Mesoporous Mater. 2015. V. 214. P. 246. https://doi.org/10.1016/j.micromeso.2015.03.024
  7. 7. Perez-Ramrez J., Abello S., Van Der Pers N.M. // Chem. -AEur.J. 2007. V. 13. № 3. P. 870. https://doi.org/10.1002/chem.200600767
  8. 8. Jin L., Zhou X., Wang F. et al. // Nat.Commun. 2022. V. 13. № 1. P. 6093. https://doi.org/10.1038/s41467-022-33912-7
  9. 9. Lee S.S., Lee B. Il, Kim S.J. et al. // Inorg. Chem. 2012. V. 51. № 19. P. 10222. https://doi.org/10.1021/ic301143r
  10. 10. Lee B.Il, Byeon S.H. // Bull. Korean Chem. Soc. 2015. V. 36.№ 3.P. 804. https://doi.org/10.1002/bkcs.10149
  11. 11. Rojas R. // Layered double hydroxides applications as sorbents for environmental remediation. Hydroxides Synth. Types Appl. Nova Science Publishers, Inc., 2012.
  12. 12. Abello S., Medina F., Tichit D. et al. // Chem. - A Eur. J. 2005. V. 11. № 2. P. 728. https://doi.org/10.1002/chem.200400409
  13. 13. Dubnova L., Danhel R., Meinhardova V. et al. // Front. Chem. 2022. V. 9. № January. P. 1. https://doi.org/10.3389/fchem.2021.803764
  14. 14. Yuan Z., Bak S.M., Li P. et al. // ACS Energy Lett. 2019. V. 4. № 6. P. 1412. https://doi.org/10.1021/acsenergylett.9b00867
  15. 15. Davila V., Lima E., Bulbulian S. et al. // Microporous Mesoporous Mater. 2008. V. 107. № 3. P. 240. https://doi.org/10.1016/j.micromeso.2007.03.013
  16. 16. Mascolo G., Marino O. // Mineral. Mag. 1980. V. 43. № 329. P. 619. https://doi.org/10.1180/minmag.1980.043.329.09
  17. 17. Япрынцев А.Д., Баранчиков А.Е., Иванов В.К. // Успехи химии. 2020. V. 89. № 6. P. 629. https://doi.org/https://doi.org/10.1070/RCR4920?locatt=label:RUSSIAN
  18. 18. Lee B.Il, Jeong H., Byeon S.H. // Inorg. Chem. 2014. V. 53. № 10. P. 5212. https://doi.org/10.1021/ic500403v
  19. 19. Aksel’rud N.V. // Russ. Chem. Rev. 1963. V. 32. № 7. P. 353. https://doi.org/10.1070/RC1963v032n07ABEH001348
  20. 20. Marchi A.J., Apestegua C.R. // Appl. Clay Sci. 1998. V. 13.№ 1. P. 35. https://doi.org/10.1016/S0169-1317 (98)00011-8
  21. 21. Kowalik P., Konkol M., Kondracka M. et al. // Appl. Catal., A: Gen. 2013. V 464-465. P 339. https://doi.org/10.1016/j.apcata.2013.05.048
  22. 22. Kooli F., Depege C., Ennaqadi A. et al. // Clays Clay Miner. 1997. V. 45. № 1. P. 92. https://doi.org/10.1346/CCMN.1997.0450111
  23. 23. Hibino T., Tsunashima A. // Chem. Mater. 1998. V. 10.№ 12. P. 4055. https://doi.org/10.1021/cm980478q
  24. 24. Zavoianu R., Brjega R., Angelescu E. et al. // Comptes Rendus Chim. 2018. V. 21. № 3-4. P. 318. https://doi.org/10.1016/j.crci.2017.07.002
  25. 25. Rocha J., Del Arco M., Rives V. et al. // J. Mater. Chem. 1999. V. 9. № 10. P. 2499. https://doi.org/10.1039/a903231b
  26. 26. Golovin S.N., Yapryntsev M.N., Lebedeva O.E. // J. Aust. Ceram. Soc. 2022. V. 58. № 5. P. 1615. https://doi.org/10.1007/s41779-022-00798-z
  27. 27. Tanaka K., Okawa H., Fujiwara T. et al. // Jpn. J. Appl. Phys. 2015. V. 54. № 7S1. P. 07HE08. https://doi.org/10.7567/JJAP.54.07HE08
  28. 28. Teplonogova M.A., Kozlova A.A., Yapryntsev A.D. et al. // Molecules. 2024. V. 29. № 7. P. 1634. https://doi.org/10.3390/molecules29071634
  29. 29. Geng F., Matsushita Y., Ma R. et al. // J. Am. Chem. Soc. 2008. V. 130. № 48. P. 16344. https://doi.org/10.1021/ja807050e
  30. 30. Feng Z., Xiao D., Liu Z. et al. // J. Phys. Chem. C. 2021. V. 125. № 13. P. 7251. https://doi.org/10.1021/acs.jpcc.1c00086
  31. 31. Geng F., Matsushita Y., Ma R. et al. // J. Am. Chem. Soc. 2008. V. 130. № 48. P. 16344. https://doi.org/10.1021/ja807050e
  32. 32. Nakamoto K. // Infrared and raman Spectra of inorganic and coordination compounds. Part A. Wiley, 2009. http://library1.nida.ac.th/termpaper6/sd/2554/ 19755.pdf
  33. 33. Meyer G., Staffel T. // ZAAC - J. Inorg. Gen. Chem. 1986. V. 532. № 1. P. 31. https://doi.org/10.1002/zaac.19865320106
  34. 34. Holsa J., Lahtinen M., Lastusaari M. et al. // J. Solid State Chem. 2002. V. 165. № 1. P. 48. https://doi.org/10.1006/jssc.2001.9491
  35. 35. Benhiti R., Bahnariu T., Carja G. et al. // Nano-Structures and Nano-Objects. 2023. V. 36. № May. P. 101043. https://doi.org/10.1016/j.nanoso.2023.101043
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека