- PII
- 10.31857/S0044457X24120027-1
- DOI
- 10.31857/S0044457X24120027
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 69 / Issue number 12
- Pages
- 1677-1689
- Abstract
- The photochemical behavior of substituted phthalimides with carboxylate groups associated with the cymantrenyl fragment was studied by infrared spectroscopy (IR), nuclear magnetic resonance (NMR) spectroscopy, UV-visible spectroscopy and cyclic voltammetry (CVA). During the formation of hemilabile dicarbonyl chelate complexes, a sharp change in the electronic, electrochemical and optical properties of compounds is observed. According to the dynamic light scattering (DLS) method, further irradiation of solutions of these complexes leads to the formation of previously undescribed stable nanoparticles in liquid media containing manganese in two degrees of oxidation Mn2+/Mn1+ and a phthalimide fragment associated with a Cp-ring coordinated or uncoordinated with manganese(I).
- Keywords
- фталимид цимантрен комплексы фотохимия наночастицы
- Date of publication
- 17.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 15
References
- 1. Payne A.J., Hendsbee A.D., McAfee S.M. et al. // Phys. Chem. Chem. Phys. 2016. V. 18. P. 14709. https://doi.org/10.1039/c6cp01596d
- 2. Suven Das // New J. Chem. 2021. V. 45. P. 20519. https://doi.org/10.1039/d1nj03924e
- 3. Taku Shoji, Nanami Iida, Akari Yamazaki et al. // Org. Biomol. Chem. 2020. V. 18. P. 2274. https://doi.org/10.1039/d0ob00164c
- 4. Weichao Zhang, Jianhua Huang, Jianqiu Xu et al. // Adv. Energy Mater. 2020. P. 2001436. https://doi.org/10.1002/aenm.202001436
- 5. Hendsbee A.D., McAfee S.M., Sun J.-P. et al. // J. Mater. Chem. C. 2015. V. 3. P. 8904. https://doi.org/10.1039/c5tc01877c
- 6. Guobing Zhang, Jinghua Guo, Jie Zhang et al. // Polym. Chem. 2015. V. 6. P. 418. https://doi.org/10.1039/C4PY00916A
- 7. Cavallari M.R., Pastrana L.M., Sosa C.D.F. et al. // Materials. 2021. V. 14. P. 3. https://doi.org/10.3390/ma14010003
- 8. Dumur F., Ibrahim-Ouali M., Gigmes D. // Appl. Sci. 2018. V. 8. P. 539. https://doi.org/10.3390/app8040539
- 9. Yuanyuan Qin, Guoping Li, Ting Qi et al. // Mater. Chem. Front. 2020. V. 4. P. 1554. https://doi.org/10.1039/d0qm00084a
- 10. Venkatramaiah N., Dinesh Kumar G., Chandrasekaran Y. et al. // ACS Appl. Mater. Interfaces. 2018. V. 10. P. 3838. https://doi.org/10.1021/acsami.7b11025
- 11. Kushwaha N., Kaushik D. // J. Appl. Pharm. Sci. 2016. V. 6. P. 159. https://doi.org/10.7324/JAPS.2016.60330
- 12. Mosallanejad B. // Chem. Methodol. 2019. V. 3. P. 261. https://doi.org/10.22034/chemm.2018.155768.1109
- 13. Chapran M., Lytvyn R., Begel C. et al. // Dyes Pigm. 2019. V. 162. P. 872. https://doi.org/10.1016/j.dyepig.2018.11.022
- 14. Fernandez-Garcia M., de la Fuente J.L., Madruga E.L. // Polym. Bull. 2000. V. 45. P. 397. https://doi.org/10.1007/s002890070013
- 15. Salas-Lopez K., Garcia-Castro M.A., Amador P. et al. // Thermochim. Acta. 2021. V. 697. P. 178861. https://doi.org/10.1016/j.tca.2021.178861
- 16. Seunghae Hwang, Hyun-seung Kim, Ji Heon Ryu et al. // J. Power Sources. 2018. V. 395. P. 60. https://doi.org/10.1016/j.jpowsour.2018.05.053
- 17. Donghan Xu, Cuijuan Zhang, Yihan Zhen et al. // ACS Appl. Energy Mater. 2021. V. 4. P. 8045. https://doi.org/10.1021/acsaem.1c01362
- 18. Jun-ichi Nishida, Hokuto Ohura, Yasuyuki Kita et al. // J. Org. Chem. 2016. V. 81. P. 433. https://doi.org/10.1021/acs.joc.5b02191
- 19. Blagoeva B., Stoilova A., Dimov D. et al. // Photochem. Photobiol. Sci. 2021. V. 20. P. 687. https://doi.org/10.1007/s43630-021-00056-4
- 20. Asiwal E.P., Shelar D.S., Gujja C.S. et al. // New J. Chem. 2022. V. 46. P. 12679. https://doi.org/10.1039/D2NJ02263J
- 21. Nanbedeh S., Faghihi K. //J. Fluoresc. 2021. V. 31. P. 517. https://doi.org/10.1007/s10895-020-02680-2
- 22. Tavakoli M., Ahmadvand H., Alaei M. et al. // Spectrochim. Acta, Part A. 2021. V. 246. P. 118952. https://doi.org/10.1016/j.saa.2020.118952
- 23. Abdel-Aziz A.A.-M., Angeli A., El-Azab A.S. et al. // Bioorg. Chem. 2019. V. 84. P. 260. https://doi.org/10.1016/j.bioorg.2018.11.033
- 24. Philoppes J.N., Lamie P.F. // Bioorg. Chem. 2019. V. 89. P. 102978. https://doi.org/10.1016/j.bioorg.2019.102978
- 25. Ai-Ling Sun, Chao-Chao Wang, Hao Zhou et al. // Lett. Drug Des. Discovery. 2022. V. 19. P. 769. https://doi.org/10.2174/1570180819666220301141149
- 26. Rus A., Bolanos-Garcia V.M., Bastida A. et al. // Catalysts. 2022 V. 12. P. 503. https://doi.org/10.3390/catal12050503
- 27. Sahin K., Orhan M.D., Avsar T. et al. // ACS Pharmacol. Transl. Sci. 2021. V. 4. P. 1111. https://doi.org/10.1021/acsptsci.0c00210
- 28. Rani A., Sharma A., Legac J. et al. // Bioorg. Med. Chem. 2021. V. 39. P. 116159. https://doi.org/10.1016/j.bmc.2021.116159
- 29. Келбышева Е.С., Стрелкова Т.В., Езерницкая М.Г. и др. // Журн. неорган. химии. 2023. Т. 68. P. 1265. https://doi.org/10.31857/S0044457X23600949
- 30. Kelbysheva E.S., Ezernitskaya M.G., Aysin R.R. et al. // Molecules. 2023. V. 28. P. 7098. https://doi.org/10.3390/molecules28207098
- 31. Lyszczek R, Mazur L., Rzaczyn'ska Z. et al. // Inorg. Chem. Commun. 2008. V. 11. P. 1091. https://doi.org/10.1016/j.inoche.2008.05.031
- 32. Гинзбург А.Г. // Успехи химии. 2009. V. 78. P. 211.
- 33. Beamson G., Briggs D. High Resolution XPS of Organic Polymers: The Scienta ESCA300 Database. Chichester: Wiley, 1992. С. 280.
- 34. Stranick M.A. // Surf. Sci. Spectra. 1999. V. 6. P. 31. https://doi.org/10.1116/1.1247888
- 35. Stranick M.A. // Surf. Sci. Spectra. 1999. V. 6. P. 39. https://doi.org/10.1116/1.1247889
- 36. Militello M.C., Gaarenstroom S.W. // Surf. Sci. Spectra. 2001. V. 8. P. 200. https://doi.org/10.1116/11.20020401
- 37. Biesinger M.C., Payne B.P., Grosvenor A.P. et al. // Appl. Surf. Sci. 2011. V. 257. P. 2717. https://doi.org/10.1016/j.apsusc.2010.10.051
- 38. Qin X., Sun H., Zaera F. // J. Vac. Sci. Technol., А. 2012. V. 30. P. 01A112. https://doi.org/10.1116/1.3658373
- 39. Ilton E.S., Post J.E., Heaney P.J. et al. // Appl. Surf. Sci. 2016. V. 366. P. 475. https://doi.org/10.1016/j.apsusc.2015.12.159
- 40. Moulder J.F., Stickle W.F., Sobol P.E. Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data. Perkin-Elmer, 1995.
- 41. Naumkin A.V., Kraut-Vass A., Gaarenstroom S.W. et al. NIST X-ray Photoelectron Spectroscopy Database (SRD 20), Version 5.0. 2023. http://srdata.nist.gov/xps/, https://dx.doi.org/10.18434/T4T88K
- 42. Sedla'k M. //J. Phys. Chem. B. 2006. V 110. P 4329. https://doi.org/10.1021/jp0569335
- 43. Wishard A., Gibb B.C. // Beilstein J. Org. Chem. 2018. V. 14. P. 2212. https://doi.org/10.3762/bjoc.14.195
- 44. Chakrabarty K., Weiss R.A., Sehgal A. et al. // Macromolecules. 1998. V. 31. P. 7390. https://doi.org/10.1021/ma980604b