ОХНМЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

ХИМИЧЕСКОЕ ОСАЖДЕНИЕ BaSn(OH)6 И ИЗУЧЕНИЕ ПРОЦЕССА ЕГО ТЕРМИЧЕСКОЙ ДЕСТРУКЦИИ ПРИ ПОЛУЧЕНИИ BaSnO3

Код статьи
10.31857/S0044457X24120014-1
DOI
10.31857/S0044457X24120014
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 69 / Номер выпуска 12
Страницы
1667-1676
Аннотация
Изучен процесс синтеза гексагидроксостанната бария BaSn(OH)6, а также его термическая деструкция с образованием станната бария BaSnO3. Показано, что наиболее интенсивное разложение BaSn(OH)6 происходит в температурном интервале 200—650℃. Кристаллизация BaSnO3 протекает в узком диапазоне температур (650–675℃), а максимум соответствующего экзотермического эффекта расположен при 667℃. Установлено, что при 500℃ BaSn(OH)6 полностью разлагается (в течение 60 мин) с образованием рентгеноаморфного порошка. В условиях выдержки материала при 600℃ (60 мин) происходит кристаллизация станната бария BaSnO3 со структурой перовскита. Содержащаяся в составе полупродукта кристаллическая примесь карбоната бария сохраняется вплоть до 600℃, а при температурах от 700℃ формируется однофазный BaSnO3. Температура кристаллизации станната бария может быть снижена на 50—75℃ за счет термической выдержки порошка в течение 40—60 мин. В условиях выдержки полупродукта при 600℃ в течение 60 мин образуется станнат бария со средним размером кристаллитов 21 ± 2 нм, а при 700℃ имеет место незначительное увеличение данного параметра (до 22 ± 2 нм). С ростом температуры до 1000℃ интенсифицируется процесс укрупнения кристаллитов (до 34 ± 3 нм). Полученный порошок BaSnO3, по данным растровой электронной микроскопии, состоит из микростержней (средняя длина составляет ~85 мкм; средний диаметр — около 10 мкм). Поверхность стержней частично покрыта сферическими частицами, сформированными из более мелких первичных частиц размером ~30 нм.
Ключевые слова
жидкофазный синтез химическое осаждение гексагидроксостаннат бария станнат бария перовскит нанопорошок
Дата публикации
17.09.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
12

Библиография

  1. 1. Mishra G., Minor C., Tiwari A. // Mater. Chem. Phys. 2023. V. 295. P. 127042. https://doi.org/10.1016/j.matchemphys.2022.127042
  2. 2. Ochoa Munoz Y.H., Ponce M., Rodrguez Paez J.E. // Powder Technol. 2015. V. 279. P. 86. https://doi.org/10.1016/j.powtec.2015.03.049
  3. 3. Alammar T., Mudring A.-V. // Inorg. Chem. 2024. V. 63. № 14. P. 6132. https://doi.org/10.1021/acs.inorgchem.3c02874
  4. 4. Chawla S., Aggarwal G., Kumar A. et al. // ChemRxiv. 2021. P. 1. https://doi.org/10.26434/chemrxiv-2021-c0500
  5. 5. Jaim H.M.I., Lee S., Zhang X. et al. // Appl. Phys. Lett. 2017. V. 111. № 17. https://doi.org/10.1063/1.4996548
  6. 6. Song X., Wang G., Zhou L. et al. // ACS Appl. Energy Mater. 2023. V. 6. № 18. P. 9756. https://doi.org/10.1021/acsaem.3c01870
  7. 7. Lee S., Wang H., Gopal P. et al. // Chem. Mater. 2017. V. 29. № 21. P. 9378. https://doi.org/10.1021/acs.chemmater.7b03381
  8. 8. Ochoa Y.H., Schipani F., Aldao C.M. et al. // J. Mater. Res. 2015. V. 30. № 22. P. 3423. https://doi.org/10.1557/jmr.2015.318
  9. 9. Vereshchagin S.N., Dudnikov V.A., Rabchevsky E.V. et al. //Trans. Ко1а Sci. Cent. RAS. Ser. Eng. Sci. 2023. V. 3. № 3. P. 76. https://doi.org/10.37614/2949-1215.2023.14.3.013
  10. 10. Kumar U., Upadhyay S. // J. Electron. Mater. 2019. V. 48. № 8. P. 5279. https://doi.org/10.1007/s11664-019-07336-x
  11. 11. Akbar N., Paydar S., Afzal M. et al. // Int. J. Hydrogen Energy. 2022. V. 47. № 8. P. 5531. https://doi.org/10.1016/j.ijhydene.2021.11.163
  12. 12. Zvonareva I.A., Starostin G.N., Akopian M.T. et al. // J. Power Sources. 2023. V. 565. P. 232883. https://doi.org/10.1016/j.jpowsour.2023.232883
  13. 13. Kumar A.A., Singh J., Rajput D.S. et al. // Mater. Sci. Semicond. Process. 2018. V. 83. P. 83. https://doi.org/10.1016/j.mssp.2018.04.023
  14. 14. Purushotham Reddy N., Santhosh R., Fernandes J.M. et al. // Mater. Lett. 2022. V. 311. P. 131629. https://doi.org/10.1016/j.matlet.2021.131629
  15. 15. Geelani K.A., Alyousef H.A., Dahshan A. et al. // Int. J. Hydrogen Energy. 2024. V. 81. P. 436. https://doi.org/10.1016/j.ijhydene.2024.07.116
  16. 16. Nithyadharseni P., Reddy M.V., Ozoemena K.I. et al. // J. Electrochem. Soc. 2016. V. 163. № 3. P. A540. https://doi.org/10.1149/2.0961603jes
  17. 17. Cha Y.L., Kim S.H. //J. Nanosci. Nanotechnol. 2020. V. 20. № 9. P. 5498. https://doi.org/10.1166/jnn.2020.17623
  18. 18. Bhattacharya A., Zhang Y., Wu H. et al. // J. Mater. Sci. Mater. Electron. 2020. V. 31. №20. P. 17461. https://doi.org/10.1007/s10854-020-04302-w
  19. 19. Bhattacharya A., Jiang Y., Gao Q. et al. // J. Mater. Res. 2019. V. 34. № 12. P. 2067. https://doi.org/10.1557/jmr.2019.95
  20. 20. Du H., Hu M., Li S. et al. // J. Food Compos. Anal. 2024. V. 133. P. 106475. https://doi.org/10.1016/j.jfca.2024.106475
  21. 21. James K.K., Krishnaprasad P.S., Hasna K. et al. // J. Phys. Chem. Solids. 2015. V. 76. P. 64. https://doi.org/10.1016/j.jpcs.2014.07.024
  22. 22. Gong L., Yu R., Ohta H. et al. // Dalton Trans. 2023. V. 52. № 19. P. 6317. https://doi.org/10.1039/D3DT01097J
  23. 23. Venkatesh G., Suganesh R., Jayaprakash J. et al. // Chem. Phys. Lett. 2022. V. 787. P. 139237. https://doi.org/10.1016/j.cplett.2021.139237
  24. 24. Rajasekaran P., Arivanandhan M., Sato N. et al. // J. Alloys Compd. 2022. V. 894. P. 162335. https://doi.org/10.1016/j.jallcom.2021.162335
  25. 25. Rajasekaran P., Arivanandhan M., Kumaki Y. et al. // CrystEngComm. 2020. V. 22. № 32. P. 5363. https://doi.org/10.1039/D0CE00702A
  26. 26. Huang C., Wang X., Liu X. et al. //J. Eur. Ceram. Soc. 2016. V. 36.№ 3. P. 583. https://doi.org/10.1016/j.jeurceramsoc.2015.11.001
  27. 27. Azad A.-M., Hon N.C. // J. Alloys Compd. 1998. V. 270. № 1-2. P. 95. https://doi.org/10.1016/S0925-8388 (98)00370-3
  28. 28. Berbenni V., Milanese C., Bruni G. et al. // Z. Naturforsch. B. 2012. V. 67. № 7. P. 667. https://doi.org/10.5560/znb.2012-0125
  29. 29. Kurre R., Bajpai S., Bajpai P.K. // Mater. Sci. Appl. 2018. V. 09. №01. P. 92. https://doi.org/10.4236/msa.2018.91007
  30. 30. Song Y.J., Kim S. //J. Ind. Eng. Chem. 2001. V. 7. № 3. P. 183.
  31. 31. Haiduk Y.S., Korobko E.V., Radkevich L.V. et al. // Russ. J. Inorg. Chem. 2024. https://doi.org/10.1134/S0036023624601065
  32. 32. Athawale A.A., Bapat M.S. D.P.A. // J. Nanosci. Nanotechnol. 2008. V. 8. № 7. P. 3661. https://doi.org/10.1166/jnn.2008.012
  33. 33. Zhong F., Zhuang H., Gu Q. et al. // RSC Adv. 2016. V. 6. № 48. P. 42474. https://doi.org/10.1039/c6ra05614h
  34. 34. Lu W., Schmidt H. // J. Mater. Sci. 2007. V. 42. № 24. P. 10007. https://doi.org/10.1007/s10853-007-2069-9
  35. 35. Sewify G.H., Shawky A. // J. Colloid Interface Sci. 2023. V. 648. P. 348. https://doi.org/10.1016/j.jcis.2023.05.201
  36. 36. Licheron M., Jouan G., Husson E. // J. Eur. Ceram. Soc. 1997. V. 17. № 12. P. 1453. https://doi.org/10.1016/S0955-2219 (97)00002-2
  37. 37. Deepa A.S., Vidya S., Manu P.C. et al. // J. Alloys Compd. 2011. V. 509. № 5. P. 1830. https://doi.org/10.1016/j.jallcom.2010.10.056
  38. 38. Stanulis A., Sakirzanovas S., Van Bael M. et al. // J. Sol-Gel Sci. Technol. 2012. V. 64. № 3. P. 643. https://doi.org/10.1007/s10971-012-2896-2
  39. 39. Smirnova M.N., Kop’eva M.A., Nipan G.D. et al. // Russ. J. Inorg. Chem. 2024. https://doi.org/10.1134/S0036023624601089
  40. 40. Ahmed J., Blakely C.K., Bruno S.R. et al. // Mater. Res. Bull. 2012. V. 47. № 9. P. 2282. https://doi.org/10.1016/j.materresbull.2012.05.044
  41. 41. Tao S., Gao F., Liu X. et al. // Sens. Actuators, B: Chem. 2000. V. 71. № 3. P. 223. https://doi.org/10.1016/S0925-4005 (00)00618-3
  42. 42. Buscaglia M.T., Leoni M., Viviani M. et al. //J. Mater. Res. 2003. V. 18. № 3. P. 560. https://doi.org/10.1557/JMR.2003.0072
  43. 43. Lu W., Schmidt H. //J. Sol-Gel Sci. Technol. 2007. V. 42. № 1. P. 55. https://doi.org/10.1007/s10971-006-1508-4
  44. 44. Koferstein R., Jager L., Zenkner M. et al. // J. Eur. Ceram. Soc. 2009. V. 29. № 11. P. 2317. https://doi.org/10.1016/j.jeurceramsoc.2009.01.026
  45. 45. Loginov A.V., Mateyshina Y.G., Aparnev A.I. et al. // Russ. J. Appl. Chem. 2018. V. 91. № 10. P. 1660. https://doi.org/10.1134/S1070427218100130
  46. 46. Bao M., Li W., Zhu P. // J. Mater. Sci. 1993. V. 28. № 24. P. 6617. https://doi.org/10.1007/BF00356405
  47. 47. Huang C., Wang X., Shi Q. et al. // Inorg. Chem. 2015. V. 54. № 8. P. 4002. https://doi.org/10.1021/acs.inorgchem.5b00269
  48. 48. Shin S.S., Yeom E.J., Yang W.S. et al. // Science (80—.). 2017. V. 356. № 6334. P. 167. https://doi.org/10.1126/science.aam6620
  49. 49. Shepherd W., Wilms M., van Embden J. et al. // Chem. Commun. 2019. V. 55. № 79. P. 11880. https://doi.org/10.1039/C9CC04838C
  50. 50. Lu W., Schmidt H. // Ceram. Int. 2008. V. 34. № 3. P. 645. https://doi.org/10.1016/j.ceramint.2007.01.002
  51. 51. Loginov A.V., Aparnev A.I., Uvarov N.F. et al. // J. Compos. Sci. 2023. V. 7. № 11. P. 469. https://doi.org/10.3390/jcs7110469
  52. 52. Marikutsa A., Rumyantseva M., Baranchikov A. et al. // Materials (Basel). 2015. V. 8.№9. P. 6437. https://doi.org/10.3390/ma8095311
  53. 53. Zhang Y., Xue Z., Yu C. et al. // e-J. Surf. Sci. Nanotechnol. 2021. V. 19. P. 104. https://doi.org/10.1380/ejssnt.2021.104
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека