- PII
- 10.31857/S0044457X24110017-1
- DOI
- 10.31857/S0044457X24110017
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 69 / Issue number 11
- Pages
- 1499-1513
- Abstract
- Single-phase samples of compounds crystalized in the La2O3-CoO-Sb2O5 system have beensynthesized by several methods. Catalytic properties of these samples were studied in the COoxidation reaction. It was found that the LaCo1/3Sb5/3O6 catalyst with a rosiaite structuresynthesized by coprecipitation with hydrothermal treatment of sediment and subsequent annealinghas the largest activity at low temperatures and stability during cyclic tests. This catalyst providesthe 90% CO conversion at 265∘C. The surface of LaCo1/3Sb5/3O6 was studied using XPS, TPD O2 and IR spectroscopy. It is shown that the CO catalytic oxidation proceeds according to the Langmuir-Hinshelwood mechanism and is accompanied by Co3+↔Co2+ and Sb3+↔Sb5+ redoxprocesses with the participation of surfactants and oxygen vacancies. At the same time, antimonyions in this process act as an electron donors, the increasing concentration of which promotes theadsorption and formation of active oxygen species on the surface. The absence of contaminationof the surface during the catalytic process has been established, which eliminates the need for itsregeneration.
- Keywords
- поверхность оксиды кобальта катализ окисление CO
- Date of publication
- 17.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 12
References
- 1. Royer S., Duprez D. // ChemCatChem. 2011. V. 3. P. 24. https://doi.org/10.1002/cctc.201000378
- 2. Royer S., Duprez D., Can F. et al. // Chem Rev. 2014. V. 114. P. 10292. https://doi.org/10.1021/cr500032a
- 3. Egorysheva A.V., Ellert O.G., Liberman E.Yu. et al. // J. Alloys Compd. 2019. V. 777. P. 655. https://doi.org/10.1016/j.jallcom.2018.11.008
- 4. Ellert O.G., Egorysheva A.V., Liberman E.Yu. et al. // Ceram. Int. 2020. V. 46. P. 27725. https://doi.org/10.1016/j.ceramint.2020.07.271
- 5. Эллерт О.Г., Егорышева А.В., Либерман Е.Ю. и др. // Неорган. материалы. 2019. Т. 55. № 12. С. 1335. https://doi.org/10.1134/S0002337X19120030
- 6. Егорышева А.В., Голодухина С.В., Плукчи К.Р. и др. // Журн. неорган. химии. 2023. Т. 68. № 12. C. 1702. https://doi.org/10.31857/S0044457X23601220
- 7. Голодухина С.В., Разворотнева Л.С., Егорышева А.В. и др. // Докл. РАН. Химия, науки о материалах. 2021. Т. 500.№1. С. 29. https://doi.org/10.31857/S268695352105006X
- 8. Blasse G., De Pauw A.D.M. // J. Inorg. Nucl. Chem. 1970. V. 32.№8. P. 2533. https://doi.org/10.1016/0022-1902 (70)80298-6
- 9. Li K., Hu Y., Wang Y. et al. // J. Solid State Chem. 2014. V. 217. P. 80. https://doi.org/10.1016/j.jssc.2014.05.003
- 10. Franco D.G., Fuertes V.C., Blanco M.C. et al. // J. Solid State Chem. 2012. V. 194. P. 385. https://doi.org/10.1016/j.jssc.2012.05.045
- 11. Егорышева А.В., Голодухина С.В., Плукчи К.Р. и др. // Журн. неорган. химии. 2024. Т. 69. № 8. В печати
- 12. Li J.-G., Buchel R., Isobe M. et al. // J. Phys. Chem. C. 2009. V. 113. P. 8009. https://doi.org/10.1021/jp8080047
- 13. Jeong B.-S., Heo Y.W., Norton D.P. et al. // Appl. Phys. Lett. 2004. V. 84. P. 2608. https://doi.org/10.1063/1.1691499
- 14. Riva R., Miessner H., Vitali R., Del Piero G. // Appl. Catal., A: Gen. 2000. V. 196. P. 111. https://doi.org/10.1016/S0926-860X (99)00460-3
- 15. Mathew T. // J. Catal. 2002. V. 210. P. 405. https://doi.org/10.1006/jcat.2002.3712
- 16. Towle S.N., Bargar J.R. // J. Colloid Interface Sci. 1997. V. 187. P. 62. https://doi.org/10.1006/jcis.1996.4539
- 17. Anantharamaiah P.N., Joy P.A. // Phys. Chem. Chem. Phys. 2016. V. 18. P. 10516. https://doi.org/10.1039/C6CP00369A
- 18. Birchall T., Connor J.A., Hillier L.H. // J. Chem. Soc., Dalton Trans. 1975. V. 20. P. 2003. https://doi.org/10.1039/dt9750002003
- 19. Carlson T.A. Auger electron spectroscopy // Photoelectron Auger Spectroscopy. Boston: Springer US, 1975. P. 279. https://doi.org/10.1007/978-1-4757-0118-0_6
- 20. Garbassi F. // Surf. Interface Anal. 1980. V. 2. P. 165. https://doi.org/10.1002/sia.740020502
- 21. Teterin Yu.A., Teterin A.Yu., Utkin I.O., Ryzhkov M.V. // J. Electron Spectros. Relat. Phenom. 2004. V. 137–140. P. 601. https://doi.org/10.1016/j.elspec.2004.02.014
- 22. Che M. // Adv. Catal. 1983. V. 32. P. 1. https://doi.org/10.1016/S0360-0564 (08)60439-3
- 23. Yamazoe N., Fuchigami J., Kishikawa M., Seiyama T. // Surf. Sci. 1979. V. 86. P. 335. https://doi.org/10.1016/0039-6028 (79)90411-4
- 24. Little L.H. Infrared Spectra of Adsorbed Species. London: Academic Press, 1966. Р. 428.
- 25. Li C., Domen K., Maruya K., Onishi T. // J. Chem. Soc. Chem. Commun. 1988. P. 1541. https://doi.org/10.1039/C39880001541
- 26. Li Z., Xu G., Hoflund G.B. // Fuel Process Technol. 2003. V. 84. P. 1. https://doi.org/10.1016/S0378-3820 (02)00099-1
- 27. Tsyganenko A.A., Rodionova T.A., Filimonov V.N. // React. Kinet. Catal. Lett. 1979. V. 11. P. 113. https://doi.org/10.1007/BF02074196
- 28. Zecchina A., Spoto G., Coluccia S. // J. Mol. Catal. 1982. V. 14. P. 351. https://doi.org/10.1016/0304-5102 (82)80095-3
- 29. Al-Mashta F., Sheppard N., Lorenzelli V., Busca G. // J. Chem. Soc., Faraday Trans. 1. 1982. V. 78. P. 979. https://doi.org/10.1039/F19827800979
- 30. Campbell С.T., Ertl G., Kuipers H., Segner J. // J. Chem. Phys. 1980. V. 73. P. 5862. https://doi.org/10.1039/F19827800979
- 31. Carrazan S.R.G., Cadus L., Dieu P. et al. // Catal. Today. 1996. V. 32. P. 311. https://doi.org/10.1016/S0920-5861 (96)00184-8