- Код статьи
- 10.31857/S0044457X24090115-1
- DOI
- 10.31857/S0044457X24090115
- Тип публикации
- Статья
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том 69 / Номер выпуска 9
- Страницы
- 1308-1318
- Аннотация
- Разработаны методики синтеза новых двойных комплексных солей (ДКС) [Cu(im)4][RuNOCl5], [Ni(im)6][RuNOCl5] · H2O и р-[Ni(im)4(DMF)2][RuNOCl5] и определена их кристаллическая структура. Изучены термические свойства синтезированных ДКС в инертной и восстановительной атмосфере с привлечением синхронного TГ–ДТА и ex situ РФА промежуточных и конечных продуктов термолиза. Установлено, что термическое разложение протекает в три этапа. Конечные продукты термолиза [Cu(im)4][RuNOCl5] в инертной и восстановительной атмосфере представляют собой смесь меди и рутения, а продукт термического разложения [Ni(im)6][RuNOCl5] · H2O в инертной атмосфере – смесь никеля и рутения. В системе никель–рутений при термолизе в восстановительной атмосфере при температуре до 400°C удается получить пересыщенный твердый раствор Ni0.27Ru0.73. Повышение температуры термолиза до 800°C приводит к частичному распаду твердого раствора.
- Ключевые слова
- двойные комплексные соли нитрозокомплексы рутения термический анализ метастабильные наносплавы
- Дата публикации
- 17.09.2025
- Год выхода
- 2025
- Всего подписок
- 0
- Всего просмотров
- 3
Библиография
- 1. Fukuda R., Takagi N., Sakaki S. et al. // J. Phys. Chem. С. 2017. V. 121. P. 300. https://doi.org/acs.jpcc.6b09280
- 2. Martynova S.A., Filatov E.Yu., Korenev S.V. et al. // J. Solid State Chem. 2014. V. 212. P. 42. https://doi.org/10.1016/j.jssc.2014.01.008
- 3. Liu J., Zhang L.L., Zhang J. et al. // Nanoscale. 2013. V. 22 P. 11044. https://doi.org/10.1039/C3NR03813K
- 4. Thirumalai D., Lee J.-U., Choi H. et al. // Chem. Commun. 2021. V. 54. P. 1947. https://doi.org/10.1039/D0CC07518C
- 5. Masson G.H.C., Cruz T.R., Gois P.D.S. et al. // New J. Chem. 2021. V. 45. P. 11466. https://doi.org/10.1039/D1NJ01498F
- 6. Sreenavya A., Ahammed S., Ramachandran A. et al. // Catal. Letters. 2022. V. 152. P. 848. https://doi.org/10.1007/s10562-021-03673-x
- 7. Elia N., Estephane J., Poupin C. et al. // ChemCatChem. 2021. V. 13. P. 1559. https://doi.org/10.1002/cctc.202001687
- 8. Ishihara A., Qian E.W., Finahari I.N. et al. // Fuel. 2005. V. 84. P. 1462. https://doi.org/10.1016/j.fuel.2005.03.006
- 9. Potemkin D.I., Saparbaev E.S., Zadesenets A.V. et al. // Catal. Ind. 2018. V. 10. P. 62. https://doi.org/10.1134/S2070050418010099
- 10. Kostin G.A., Plyusnin P.E., Filatov E.Y. et al. // Polyhedron. 2019. V. 159. P. 217. https://doi.org/10.1016/j.poly.2018.11.065
- 11. Filatov E.Yu., Borodin A.O., Kuratieva N.V. et al. // New J. Chem. 2022. V. 46. P. 19009. https://doi.org/10.1039/D2NJ03402F
- 12. Плюснин П.Е., Шубин Ю.В., Коренев С.В. // Журн. структур. химии. 2022. Т. 63. № 3. С. 271.
- 13. Mercer E.E., McAllister W.A., Durig J.R. // Inorg. Chem. 1966. V. 5. P. 1881. https://doi.org/10.1021/ic50045a010
- 14. Archer S.J., Auf der Heyde T.P.E., Foulds G.A. et al. // Trans. Met. Chem. 1982. V. 7. P. 59. https://doi.org/10.1007/BF00623811
- 15. Naumov P., Jovanovski G. // Spectrosc. Lett. 1999. V. 32. P. 237. https://doi.org/10.1080/00387019909349980
- 16. Powder Diffraction File, PDF-2, International Centre for Diffraction Data, Pennsylvania, USA. Powder Diffr. File, PDF-2, Int. Cent. Diffr. Data, Pennsylvania, USA (2014).
- 17. Kraus W., Nolze G. POWDERCELL 2.4. Program for the Representation and Manipulation of Crystal Structures and Calculation of the Resulting X-Ray Powder Patterns; Federal Institute for Materials Research and Testing: Berlin, 2000.
- 18. Krumm S. An interactive Windows program for profile fitting and size/strain analysis, Mater. Sci. Forum, 1996. P. 228.
- 19. Sheldrick G.M. // Acta Crystallogr., Sect. A: Found. Crystallogr. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053273314026370
- 20. Enemark J.H., Feltham R.D. // Coord. Chem. Rev. 1974. V. 13. P. 339. https://doi.org/10.1002/9780470145227.ch88
- 21. Sanchis-Perucho A., Martínez-Lillo J. // Dalton Trans. 2019. V. 48. P. 13925. https://doi.org/10.1039/c9dt02884f
- 22. Samoľova E., Kuchar J., Grzimek V. et al. // Polyhedron. 2019. V. 170. P. 51. https://doi.org/10.1016/j.poly.2019.05.024
- 23. Pedersen A.H., Julve M., Martínez-Lillo J. et al. // Dalton Trans. 2017. V. 46. P. 16025. https://doi.org/10.1039/c7dt02216f
- 24. Mwanza T., Kürkçüoğlu G.S., Ünver H. et al. // J. Solid State Chem. 2022. V. 314. P. 123344. https://doi.org/10.1016/j.jssc.2022.123344
- 25. Jikun Li, Xianqiang Huang, Song Yang et al. // Cryst. Growth Des. 2015. V. 15. № 4. P. 1907. https://doi.org/10.1021/acs.cgd.5b00086
- 26. Бородин А.О., Филатов Е.Ю., Куратьева Н.В. и др. // Журн. структур. химии. 2023. Т. 64. № 11. P. 118092. https://doi.org/10.26902/jsc_id118092
- 27. Скорик Н.А., Ильина К.А., Козик В.В. // Журн. неорган. химии. 2021. Т. 66. № 11. С. 1597. https://doi.org/10.31857/S0044457X21110180
- 28. Костин Г.А., Бородин А.О., Куратьева Н.В. и др. // Коорд. химия. 2013. Т. 39. № 4. С. 244. https://doi.org/10.7868/S0132344X13040063