ОХНМЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

Синтез и исследование термодинамических свойств германатов CaYb2Ge4O12 и CaLu2Ge4O12 в интервале температур 320–1050 K

Код статьи
10.31857/S0044457X24090079-1
DOI
10.31857/S0044457X24090079
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 69 / Номер выпуска 9
Страницы
1277-1283
Аннотация
Из оксидов CaO, Yb2O3 (Lu2O3) и GeO2 обжигом на воздухе при температурах 1223‒1423 K проведен твердофазный синтез CaYb2Ge4O12 и CaLu2Ge4O12. Кристаллическая структура полученных германатов определена методом рентгеновской дифракции. Высокотемпературная теплоемкость в интервале температур 320‒1050 K измерена методом дифференциальной сканирующей калориметрии. Установлено, что полученные данные по теплоемкости хорошо описываются уравнением Майера–Келли: Cp(CaYb2Ge4O12) = , Cp(CaLu2Ge4O12) = . По этим результатам рассчитаны основные термодинамические свойства оксидных соединений.
Ключевые слова
твердофазный синтез германаты редкоземельных элементов высокотемпературная теплоемкость термодинамические свойства
Дата публикации
17.09.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
15

Библиография

  1. 1. Денисов В.М., Истомин С.А., Подкопаев О.И. и др. Германий, его соединения и сплавы. Екатеринбург: УрО РАН, 2002. 599 с.
  2. 2. Piccinelli P., Lausi A., Bettinelli M. // J. Solid State Chem. 2013. V. 205. P. 190. https://doi.org/10.1016/j.jssc.2013.07.021
  3. 3. Baklanova Y.V., Enyashin A.N., Maksimova L.G. et al. // Ceram. Int. 2018. V. 44. P. 6959. https://doi.org/10.1016/j.ceramint.2018.01.128
  4. 4. Cui J., Li P., Cao L. et al. // J. Lumin. 2021. V. 237. P. 118170. https://doi.org/10.1016/j.jlumin.2021.11.118170
  5. 5. He Y., Wei X., Wu Y. et al. // J. Solid State Chem. 2023. V. 322. P. 123980. https://doi.org/10.1016/j.jssc.2023.123980
  6. 6. Зубков В.Г., Леонидов И.И., Тютюнник А.П. и др. // Физика твердого тела. 2008. Т. 50. № 9. С. 1635.
  7. 7. Melkozerova M.A., Tarakina N.V., Maksimova L.G. et al. // J. Sol-Gel. Sci. Technol. 2011. V. 59. P. 338. https://doi.org/10.1007/s10971-011-2508-6
  8. 8. Leonidov I.I., Petrov V.P., Chernyshev V.A. et al. // J. Phys. Chem. 2014. V. 118. P. 8090. https://doi.org/10.1021/jp410492a
  9. 9. Lipina O.A., Surat L.L., Melkozerova M.A. et al. // J. Solid State Chem. 2013. V. 206. P. 117. https://doi.org/10.1016/j.jssc.2013.08.007
  10. 10. Tatarina N.V., Zubkov V.G., Leonidov I.I. et al. // Z. Kristallogr. Suppl. 2009. V. 30. P. 401. https://doi.org/10.1524/zksu.2009.0059
  11. 11. Денисова Л.Т., Молокеев М.С., Каргин Ю.Ф. и др. // Неорган. материалы. 2022. Т. 58. № 4. С. 432. https://doi.org/10.31857/S0002337X22040030
  12. 12. Галиахметова Н.А., Денисова Л.Т., Васильев Г.В. и др. // Физика твердого тела. 2023. Т. 65. № 10. С. 1821. https://doi.org/10.21883/FTТ. 2023. 56332.102
  13. 13. Васильев Г.В., Коваленко К.Р., Денисова Л.Т. // Сб. тез. докл. X Всерос. конф. Высокотемпературная химия оксидных систем и материалов. СПб.: ЛЕМА, 2023. С. 154.
  14. 14. Yamana H., Tanimura R., Yamada T. et al. // J. Solid State Chem. 2006. V. 179. P. 289. https://doi.org/10.1016/j.jssc.2005.10.023
  15. 15. Bruker AXS TOPAS V4: General profile and structure analysis software for powder diffraction data. Userʼs Manual. Karlsruhe: Bruker AXS, 2008.
  16. 16. Zubkov V.G., Tarakina N.V., Leonidov I.I. et al. // J. Solid State Chem. 2010. V. 183. P. 1186. https://doi.org/10.1016/j.jssc.2010.03.027
  17. 17. Shannon R.D. // Acta Crystallogr., Sect. A. 1976. V. 32. P. 751.
  18. 18. Денисова Л.Т., Иртюго Л.А., Каргин Ю.Ф. и др. // Неорган. материалы. 2017. Т. 53. № 1. С. 71. https://doi.org/10.7868/S0002337X17010043
  19. 19. Maier C.G., Kelley K.K. // J.Am. Chem. Soc. 1932. V. 54. № 8. P. 3243. https://doi.org/10.1021/ja01347a029
  20. 20. Leitner J., Chuchvalec P., Sedmidubský D. et al. // Thermochim. Acta. 2003. V. 395. P. 27.
  21. 21. Leitner J., Voňka P., Sedmidubský D., Svoboda P. // Thermochim. Acta. 2010. V. 497. P. 7. https://doi.org/10.1016/j.tca.2009.08.002
  22. 22. Успенская И.А., Иванов А.С., Константинова Н.М., Куценок И.Б. // Журн. физ. химии. 2022. Т. 96. № 9. С. 1302. https://doi.org/10.31857/S0044453722090291
  23. 23. Третьяков Ю.Д. Твердофазные реакции. М.: Химия, 1978. 360 с.
  24. 24. Денисова Л.Т., Каргин Ю.Ф., Белоусова Н.В. и др. // Неорган. материалы. 2019. Т. 55. № 9. С. 1007. https://doi.org/10.1134/S0002337X19090021
  25. 25. Осина Е.Л. // Теплофизика высоких температур. 2017. Т. 55. № 2. С. 223. https://doi.org/10.7868/S0040364417020120
  26. 26. Моисеев Г.К., Ватолин Н.А., Маршук Л.А., Ильиных Н.И. Температурные зависимости приведенной энергии Гиббса некоторых неорганических веществ (альтернативный банк данных АСТРА. OWN). Екатеринбург: УрО РАН, 1997. 230 с.
  27. 27. Морачевский А.Г., Сладков И.Б., Фирсова Е.Г. Термодинамические расчеты в химии и металлургии. СПб.: Лань, 2018. 208 с.
  28. 28. Кубашевский О., Олкокк С.Б. Металлургическая термохимия. М.: Металлургия, 1982. 392 с.
  29. 29. Mostafa A.T.M.G., Eakman J.M., Montoya M.M., Yarbro S.L. // Ind. Eng. Chem. Res. 1996. V. 35. P. 343. https://doi.org/10.1021/ie9501485
  30. 30. Leitner J., Sedmidubský D., Chuchvalec P. // Ceram. Silik. 2002. V. 46. P. 29.
  31. 31. Кумок В.Н. Прямые и обратные задачи химической термодинамики. Новосибирск: Наука, 1987. С. 108.
  32. 32. Zinkevich M. // Prog. Mater. Sci. 2007. V. 52. P. 597. https://doi.org/10.1016/j.pmatsci.2006.09.002
  33. 33. Guskov A.V., Gagarin P.G., Guskov N.V. et al. // Ceram. Int. 2021. V. 47. P. 28004. https://doi.org/10.1016/j.ceramint.2021.06.125
  34. 34. Mostafa A.T.G.M., Eakman J.M., Yarbro S.L. // Ind. Eng. Chem. Res. 1995. V. 34. P. 4577.
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека