RAS Chemistry & Material ScienceЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

Phase Equilibria in the La2O3-(Ni/Со)O-Sb2O5 Systems in the Subsolidus Region

PII
10.31857/S0044457X24080095-1
DOI
10.31857/S0044457X24080095
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 69 / Issue number 8
Pages
1163-1173
Abstract
Subsolidus phase equilibria in the La2O3–(Ni/Со)O–Sb2O5 systems have been studied. A previously unknown compound La4Sb2O11 was found in the system La2O3–Sb2O5. La4Sb2O11 has been shown to be decomposed at a temperature of 1060°C to form La3SbO7 and LaSbO4. Two ternary oxides LaNi2SbO6 and La2NiSb2O9 were found in the La2O3–NiO–Sb2O5 system for the first time. These new compounds are stable and do not undergo polymorphic transformations throughout the studied temperature range (25–1350°C). The existence of previously known triple oxides La3Ni2SbO9 and LaNi1/3Sb5/3O6 with structures of perovskite and rosiaite, respectively, has also been confirmed. Two more new compounds LaCo2SbO6 and La2CoSb2O9 are formed in the La2O3–CoO–Sb2O5 system along with previously known compounds with the structures of perovskite La3Co2SbO9, rosiaite LaCo1/3Sb5/3O6 and rhombohedral pyrochlore La3Co2Sb3O14. These compounds are isostructural to those found in the nickel oxide system. The La2CoSb2O9 compound, unlike similar nickel compound, decomposes at a temperature of 990°C. For LaCo2SbO6, no thermal effects on DSC curves associated with polymorphic transitions or melting were detected up to 1350°C. Analysis of the optical diffuse reflection spectra of the newly synthesized phases LaNi2SbO6, La2NiSb2O9, LaCo2SbO6 and La2CoSb2O9 showed that nickel and cobalt in them are in the oxidation state of 2+. Isothermal sections of La2O3–(Ni/Co)O–Sb2O5 systems at 1050°C have been constructed.
Keywords
фазовые равновесия антимонаты оксиды никеля оксиды кобальта
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
12

References

  1. 1. Sato J., Saito N., Nishiyama H. et al. // J. Photochem. Photobiol. A. 2002. V. 148. № 1–3. P. 85. https://doi.org/10.1016/S1010-6030 (02)00076-X
  2. 2. Moreno-Hernandez I.A., Brunschwig B.S., Lewis N.S. // Energy Environ. Sci. 2019. V. 12. № 4. P. 1241. https://doi.org/10.1039/C8EE03676D
  3. 3. Gunasooriya G.K. K., Kreider M.E., Liu Y. et al. // ACS Nano. 2022. V. 16. P. 6334. https://doi.org/10.1021/acsnano.2c00420
  4. 4. Moreno-Hernandez I.A., MacFarland C.A., Read C.G. et al. // Energy Environ. Sci. 2017. V. 10. № 10. P. 2103. https://doi.org/10.1039/C7EE01486D
  5. 5. Zhou L., Shinde A., Montoya J.H. et al. // ACS Catal. 2018. V. 8. № 12. P. 10938. https://doi.org/10.1021/acscatal.8b02689
  6. 6. Evans T.A., Choi K.-S. // ACS Appl. Energy Mater. 2020. V. 3. № 6. P. 5563. https://doi.org/10.1021/acsaem.0c00526
  7. 7. Ham K., Hong S., Kang S. et al. // ACS Energy Lett. 2021. V. 6. № 2. P. 364. https://doi.org/10.1021/acsenergylett.0c02359
  8. 8. Zhou L., Wang Y., Kan K. et al. // ACS Sustainable Chem. Eng. 2022. V. 10. № 48. P. 15898. https://doi.org/10.1021/acssuschemeng.2c05239
  9. 9. Gadgil M.M., Kulshreshtha S.K. // J. Mol. Catal. A: Chem. 1995. V. 95. № 3. P. 211. https://doi.org/10.1016/1381-1169 (94)00027-1
  10. 10. Karimi M., Dariush S., Kobra A. et al. // Tetrahedron Lett. 2015. V. 56. № 21. P. 2674. https://doi.org/10.1016/j.tetlet.2015.03.114
  11. 11. Grasselli R.K. // J. Chem. Educ. 1986. V. 63. P. 216. https://doi.org/10.1021/ed063p216
  12. 12. Burriesci N., Garbassi F., Petrera M. et al. // J. Chem. Soc., Faraday Trans. 1. 1982. V. 78. № 3. P. 817. https://doi.org/10.1039/F19827800817
  13. 13. Teller R.G., Brazdil J.F., Grasselli R.K. et al. // J. Chem. Soc., Faraday Trans. 1. 1985. V. 81. P. 1693. https://doi.org/10.1039/F19858101693
  14. 14. Egorysheva A.V., Ellert O.G., Liberman E.Yu. // J. Alloys Compd. 2019. V. 777. P. 655. https://doi.org/10.1016/j.jallcom.2018.11.008
  15. 15. Эллерт О.Г., Егорышева А.В., Либерман Е.Ю. и др. // Неорган. материалы. 2019. Т. 55. № 12. С. 1335. https://doi.org/10.1134/S0002337X19120030l
  16. 16. Liberman E.Yu., Ellert O.G., Naumkin A.V. et al. // Russ. J. Inorg. Chem. 2020. V. 65. P. 592. https://doi.org/10.1134/S0036023620040117
  17. 17. Ellert O.G., Egorysheva A.V., Liberman E.Yu. et al. // Ceram. Int. 2020. V. 46. P. 27725. https://doi.org/10.1016/j.ceramint.2020.07.271
  18. 18. Egorysheva A.V., Ellert O.G., Liberman E.Yu. et al. // Russ. J. Inorg. Chem. 2022. Т. 67. № 13. P. 2127. https://doi.org/10.1134/S0036023622601349
  19. 19. Egorysheva A.V., Plukchi K.R., Golodukhina S.V. et al. // Mendeleev Commun. 2023. V. 33. P. 608. https://doi.org/10.1016/j.mencom.2023.09.005
  20. 20. Егорышева А.В., Голодухина С.В., Плукчи К.Р. и др. // Журн. неорган. химии. 2023. Т. 68. № 12. C. 1702. https://doi.org/10.31857/S0044457X23601220
  21. 21. Swaminathan K., Sreedharan O.M. // J. Alloys Compd. 1999. V. 292. № 1–2. P. 100. https://doi.org/10.1016/S0925-8388 (99)00283-2
  22. 22. Haeuseler H. // Spectrochim. Acta, Part A: Mol. Spectrosc. 1981. V. 37. № 7. P. 487. https://doi.org/10.1016/0584-8539 (81)80036-0
  23. 23. Ehrenberg H., Wltschek G., Rodriguez-Carvajal J. et al. // J. Magn. Magn. Mater. 1998. V. 184. P. 111. https://doi.org/10.1016/S0304-8853 (97)01122-0
  24. 24. Rodríguez-Betancourtt V.M., Bonilla H.G., Martínez M.F. et al. // J. Nanomater. 2017. V. 2017. Art. 8792567. https://doi.org/10.1155/2017/8792567
  25. 25. Singh A., Singh A., Singh S. et al. // Chem. Phys. Lett. 2016. V. 646. P. 41. https://doi.org/10.1016/j.cplett.2016.01.005
  26. 26. Nikulin A.Y., Zvereva E.A., Nalbandyan V.B. et al. // Dalton Trans. 2017. V. 46. P. 6059. https://doi.org/10.1039/C6DT04859E
  27. 27. Gavarri J.R., Chater R., Ziółkowski J. // J. Solid State Chem. 1988. V. 73. № 2. P. 305. https://doi.org/10.1016/0022-4596 (88)90114-4
  28. 28. Turbil J.P., Bernier J.C. // C. R. Acad. Sci. (Paris), Ser. C. 1973. V. 277. P. 1347.
  29. 29. Odier P., Nigara Y., Coutures J. et al. // J. Solid State Chem. 1985. V. 56. № 1. P. 32. https://doi.org/10.1016/0022-4596 (85)90249-X
  30. 30. Brito M.S.L., Escote M.T., Santos C.O.P. et al. // Mater. Chem. Phys. 2004. V. 88. P. 404. https://doi.org/10.1016/j.matchemphys.2004.08.008
  31. 31. Zhou H.D., Wiebe C.R., Janik J.A. et al. // J. Solid State Chem. 2010. V. 183. P. 890. https://doi.org/10.1016/j.jssc.2010.01.025
  32. 32. Kitayama K. // J. Solid State Chem. 1990. V. 87. P. 165. https://doi.org/10.1016/0022-4596 (90)90078-C
  33. 33. Ram R.A.M., Ganapathi L., Ganguly P. et al. // J. Solid State Chem. 1986. V. 63. P. 139. https://doi.org/10.1016/0022-4596 (86)90163-5
  34. 34. Wold A., Post B., Banks E. // J. Am. Chem. Soc. 1957. V. 79. P. 4911. https://doi.org/10.1021/ja01575a022
  35. 35. Zinkevich M., Aldinger F. // J. Alloys Compd. 2004. V. 375. № 1–2. P. 147. https://doi.org/10.1016/j.jallcom.2003.11.138
  36. 36. Demina A.N., Cherepanov V.A., Petrov A.N. et al. // Inorg. Mater. 2005. V. 41. P. 736. https://doi.org/10.1007/s10789-005-0201-2
  37. 37. Hayward M.A., Green M.A., Rosseinsky M.J. et al. // J. Am. Chem. Soc. 1999. V. 121. P. 8843. https://doi.org/10.1021/ja991573i
  38. 38. Zhang W.-W., Povoden-Karadeniz E., Xu H. et al. // J. Phase Equilib. Diffus. 2019. V. 40. P. 219. https://doi.org/10.1007/s11669-019-00717-z
  39. 39. Adachi Y., Hatada N., Uda T. // J. Electrochem. Soc. 2016. V. 163. P. F1084. https://doi.org/10.1149/2.0811609je
  40. 40. Ok K.M., Gittens A., Zhang L. et al. // J. Mater. Chem. 2004. V. 14. P. 116. https://doi.org/10.1039/B307496J
  41. 41. Siqueira K.P.F., Borges R.M., Granado E. et al. // J. Solid State Chem. 2013. V. 203. P. 326. https://doi.org/10.1016/j.jssc.2013.05.001
  42. 42. Варфоломеев М.Б., Тороренская Т.А., Бурляев В.В. // Журн. неорган. химии. 1981. Т. 26. № 2. C. 319.
  43. 43. Siqueira K.P.F., Borges R.M., Soares J.C. et al. // Mater. Chem. Phys. 2013. V. 140. P. 255. https://doi.org/10.1016/j.matchemphys.2013.03.031
  44. 44. Blasse G., De Pauw A.D.M. // J. Inorg. Nucl. Chem. 1970. V. 32. № 8. P. 2533. https://doi.org/10.1016/0022-1902 (70)80298-6
  45. 45. Эллерт О.Г., Егорышева А.В., Голодухина С.В. и др. // Изв. РАН. Сер. Хим. 2021. № 12. С. 2397.
  46. 46. Battle P.D., Evers S.I., Hunter E.C. et al. // Inorg. Chem. 2013. V. 52. № 11. P. 6648. https://doi.org/10.1021/ic400675r
  47. 47. Alvarez I., Veiga M.L., Pico C. // Solid State Ionics. 1996. V. 91. № 3–4. P. 265. https://doi.org/10.1016/S0167-2738 (96)83028-1
  48. 48. Alvarez I., Veiga M.L., Pico C. // J. Alloys Compd. 1997. V. 255. № 1–2. P. 74. https://doi.org/10.1016/S0925-8388 (96)02870-8
  49. 49. Li K., Hu Y., Wang Y. et al. // J. Solid State Chem. 2014. V. 217. P. 80. https://doi.org/10.1016/j.jssc.2014.05.003
  50. 50. Franco D.G., Fuertes V.C., Blanco M.C. et al. // J. Solid State Chem. 2012. V. 194. P. 385. https://doi.org/10.1016/j.jssc.2012.05.045
  51. 51. Lever A.B.P. Inorganic Electronic Spectroscopy. V. 2. Elsevier A. 1984.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library