RAS Chemistry & Material ScienceЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

Heat Capacity And Thermal Expansion Of LaMgAl11O19

PII
10.31857/S0044457X24060089-1
DOI
10.31857/S0044457X24060089
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 69 / Issue number 6
Pages
866-873
Abstract
The heat capacity of LaMgAl11O19 with a magnetoplumbite structure was measured in the temperature range of 7–1865 K using relaxation, adiabatic and differential scanning calorimetries. Obtained temperature dependences of the heat capacity are consistent based on adiabatic calorimetry data. Thermodynamic functions (entropy, enthalpy change, reduced Gibbs energy) in the range 0–1865 K are calculated from fitted values. Thermal expansion in the range of 300-1200 K was studied by high-temperature X-ray diffraction and the coefficient of thermal expansion of LaMgAl11O19 was calculated.
Keywords
гексаалюминат магнетоплюмбит теплоемкость термодинамика термическое расширение
Date of publication
15.06.2024
Year of publication
2024
Number of purchasers
0
Views
29

References

  1. 1. Lu H., Wang C.-A., Zhang C. // Ceram. Int. 2014. V. 40. P. 16273. https://doi.org/10.1016/j.ceramint.2014.07.064
  2. 2. Iyi N., Takekawa S., Kimura S. // J. Solid State Chem. 1989. V. 83. P. 8. https://doi.org/10.1016/0022-4596 (89)90048-0
  3. 3. Gadow R., Lischka M. // Surf. Coat. Technol. 2002. V. 151–152. P. 392. https://doi.org/10.1016/S0257-8972 (01)01642-5
  4. 4. Bansal N.P., Zhu D. // Surf. Coat. Technol. 2008. V. 202. P. 2698. https://doi.org/10.1016/j.surfcoat.2007.09.048
  5. 5. Zhang Y., Wang Y., Jarligo M.O. et al. // Opt. Lasers Eng. 2008. V. 46. P. 601. https://doi.org/10.1016/j.optlaseng.2008.04.001
  6. 6. Friedrich C., Gadow R., T. Schirmer T. // J. Therm. Spray Technol. 2001. V. 10. P. 592. https://doi.org/10.1361/105996301770349105
  7. 7. Liu Z.-G., Ouyang J.-H., Zhou Y. // J. Alloys Compd. 2009. V. 472. P. 319. https://doi.org/10.1016/j.jallcom.2008.04.042
  8. 8. Liu Z.-G., Ouyang J.-H., Zhou Y. et al. // Philos. Mag. 2009. V. 89. P. 553. https://doi.org/10.1080/14786430802684126
  9. 9. Lee K.N. 4.4.2. Protective coatings for gas turbine // https://www.netl.doe.gov/sites/default/files/gas-turbine-handbook/4-4-2.pdf
  10. 10. Wang Y.-H., Ouyang J.-H., Liu Zh.-G. // J. Alloys Compd. 2009. V. 485. P. 734. https://doi.org/10.1016/j.jallcom.2009.06.068
  11. 11. Chen X., Gu L., Zou B. et al. // Surf. Coat. Technol. 2012. V. 206. P. 2265. https://doi.org/10.1016/j.surfcoat.2011.09.076.
  12. 12. Cao X.Q., Zhang Y.F., Zhang J.F. et al. // J. Eur. Ceram. Soc. 2008. V. 28. P. 1979. https://doi.org/10.1016/j.jeurceramsoc.2008.01.023
  13. 13. Chen X., Zhao Y., Fan X. et al. // Surf. Coat. Technol. 2011. V. 205. P. 3293. https://doi.org/10.1016/j.surfcoat.2010.11.059
  14. 14. Doležal V., Nádherný L., Rubešová K. et al. // Ceram. Int. 2019. V. 45. P. 11233. https://doi.org/10.1016/j.ceramint.2019.02.162
  15. 15. Lefebvre D., Thery J., Vivien D. // J. Am. Ceram. Soc. 1986. V. 69(11). P. C-289. https://doi.org/10.1111/j.1151-2916.1986.tb07380.x
  16. 16. Kahn A., Lejus A.M., Madsac M. et al. // J. Appl. Phys. 1981. V. 52. P. 6864. https://doi.org/10.1063/1.328680
  17. 17. Lu X., Yuan J., Xu M. et al. // Ceram. Int. 2021. V. 47. P. 28892. https://doi.org/10.1016/j.ceramint.2021.07.050
  18. 18. Гагарин П.Г., Гуськов А.В., Гуськов В.Н. и др. // Журн. неорган. химии. 2023. Т. 68(11). С. 1607. Gagarin P.G., Guskov A.V., Guskov V.N. et al. // Russ. J. Inorg. Chem. 2023. V. 68(11). P. 1599. https://doi.org/10.1134/S0036023623602064
  19. 19. Lu H., Wang C., Zhang C., Tong S. // J. Europ. Ceram. Soc. 2015. V. 35. P. 1297. http://dx.doi.org/10.1016/j.jeurceramsoc.2014.10.030
  20. 20. Friedrich C., Gadow R., Schirmer T. // Proc. of the 1st Int. Therm. Spray Conf. 2000. P. 1219. https://doi.org/10.31399/asm.cp.itsc2000p1219
  21. 21. Guskov V.N., Tyurin A.V., Guskov A.V. et al. // Ceram. Int. 2020. V. 46. P. 12822. https://doi.org/10.1016/j.ceramint.2020.02.052
  22. 22. Тюрин А.В., Хорошилов А.В., Гуськов В.Н. и др. // Журн. неорган. химии. 2018. Т. 63(12). С. 1583. https://doi.org/10.1134/S0044457X18120218
  23. 23. Voskov A.L., Kutsenok I.B., Voronin G.F. // Calphad. 2018. V. 16. P. 50. https://doi.org/10.1016/j.calphad.2018.02.001
  24. 24. Voronin G.F., Kutsenok I.B. // J. Chem. Eng. Data. 2013. V. 58. P. 2083. https://doi.org/10.1021/je400316m
  25. 25. Prohaska T., Irrgeher J., Benefield J. et al. // Pure Appl. Chem. 2022. V. 94(5). P. 573. https://doi.org/10.1515/pac-2019-0603
  26. 26. Maier C.G., Kelley K.K. // J. Am. Chem. Soc. 1932. V. 54. P. 3243. https://doi.org/10.1021/ja01347a029
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library