RAS Chemistry & Material ScienceЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

Study of the Reversible Hawthorne Rearrangement between Isomeric Forms of the Octadecahydroeicosaborate Anion using Dynamic 11B NMR Spectroscopy

PII
10.31857/S0044457X24060033-1
DOI
10.31857/S0044457X24060033
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 69 / Issue number 6
Pages
816-821
Abstract
The process of rearrangement of the octadecahydroeicosaborate anion [trans-B20H18]2– → [iso-B20H18]2– in various solvents (acetonitrile, DMF, DMSO) under UV irradiation in dynamics has been studied using 11B NMR spectroscopy. It has been shown that the time of complete isomeric transition depends on the solvent used. In acetonitrile, complete conversion of the [trans-B20H18]2– anion to the iso form is achieved in 1 h; in DMF, the process takes about 2 h; in DMSO, about 3 h. The reverse process of rearrangement of the macropolyhedral borohydride anion [iso-B20H18]2– → [trans-B20H18]2– has been studied under the influence of temperature in DMF and it has been shown that an increase in the reaction time and an increase in the temperature of the reaction solution is accompanied by degradation of the boron cluster.
Keywords
кластерные анионы бора УФ-облучение изомеризация октадекагидроэйкозаборатный анион
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
14

References

  1. 1. Chamberland B.L., Muetterties E.L. // Inorg. Chem. 1964. V. 3. P. 1450. https://doi.org/10.1021/ic50020a025
  2. 2. Hawthorne M.F., Pilling R.L. // J. Am. Chem. Soc. 1966. V. 88. P. 3873. https://doi.org/10.1021/ja00968a044
  3. 3. Hawthorne M.F., Shelly K., Li F. // Chem. Commun. 2002. P. 547. https://doi.org/10.1039/B110076A
  4. 4. Curtis Z.B., Young C., Dickerson R., Kaczmarczyk A. // Inorg. Chem. 1974. V. 13. P. 1760. https://doi.org/10.1021/ic50137a046
  5. 5. Voinova V.V., Klyukin I.N., Novikov A.S. et al. // Russ. J. Inorg. Chem. 2021. V. 66. P. 295. https://doi.org/10.1134/S0036023621030190
  6. 6. Francés-Monerris A., Holub J., Roca-Sanjuán D. et al. // Phys. Chem. Lett. 2019. V. 10. P. 6202. https://doi.org/10.1021/acs.jpclett.9b02290
  7. 7. Kaczmarczyk A., Dobrott R.D., Lipscomb W.N. // Proc. Nat. Acad. Sci. USA. 1962. V. 48. P. 729.
  8. 8. Hawthorne M.F., Pilling R.L., Stokely P.F., Garrett P.M. // J. Am. Chem. Soc. 1963. V. 85. P. 3704.
  9. 9. Li F., Shelly K., Knobler C.B., Hawthorne M.F. // Angew. Chem. Int. Ed. 1998. V. 37. P. 1868. https://doi.org/10.1002/ (SICI)1521-3773(19980803) 37:13/143.0.CO;2-Z
  10. 10. Avdeeva V.V., Buzin M.I., Dmitrienko A.O. et al. // Chem. Eur. J. 2017. V. 23. P. 16819. https://doi.org/10.1002/chem.201703285.
  11. 11. Avdeeva V.V., Malinina E.A., Zhizhin K.Y. et al. // J. Struct. Chem. 2019. V. 60. P. 692. https://doi.org/10.1134/S0022476619050020
  12. 12. Avdeeva V.V., Malinina E.A., Kuznetsov N.T. // Russ. J. Inorg. Chem. 2020. V. 65. P. 335. https://doi.org/10.1134/S003602362003002X
  13. 13. Avdeeva V.V., Buzin M.I., Malinina E.A. et al. // Cryst. Eng. Comm. 2015. V. 17. P. 8870. https://doi.org/10.1039/C5CE00859J
  14. 14. Avdeeva V.V., Kubasov A.S., Golubev A.V. et al. // Russ. J. Inorg. Chem. 2023. V. 68. P. 1209. https://doi.org/10.1134/S0036023623601502
  15. 15. Li F., Shelly K., Knobler C.B., Hawthorne M.F. // Angew. Chem. Int. Ed. 1998. V. 37. P. 1865.
  16. 16. Bernhardt E., Brauer D.J., Finze M., Willner H. // Angew. Chem. Int. Ed. 2007. V. 46. P. 2927. https://doi.org/10.1002/anie.200604077
  17. 17. Hawthorne M.F., Pilling R.L., Garrett P.M. // J. Am. Chem. Soc. 1965. V. 87. P. 4740. https://doi.org/10.1021/ja00949a013
  18. 18. Georgiev E.M., Shelly K., Feakes D.A. et al. // Inorg. Chem. 1996. V. 35. P. 5412. https://doi.org/10.1021/ic960171y
  19. 19. Li F., Shelly K., Kane R.R. et al. // Angew. Chem. Int. Ed. 1996. V. 35. P. 2646. https://doi.org/10.1002/anie.199626461
  20. 20. Montalvo S.J., Hudnall T.W., Feakes D.A. // J. Organomet. Chem. 2015. V. 798. P. 141. https://doi.org/10.1016/j.jorganchem.2015.05.064
  21. 21. Smits J.P., Mustachio N., Newell B., Feakes D.A. // Inorg. Chem. 2012. V. 51. P. 8468. https://doi.org/10.1021/ic301044m
  22. 22. Feakes D.A., Shelly K., Knobler C.B., Hawthorne M.F. // Proc. Nati. Acad. Sci. USA. 1994. V. 91. P. 3029. https://doi.org/10.1073/pnas.91.8.3029
  23. 23. Feakes D.A., Waller R.C., Hathaway D.K., Morton V.S. // Proc. Nati. Acad. Sci. USA. 1999. V. 96. P. 6406. https://doi.org/10.1073/pnas.96.11.6406
  24. 24. Shelly K., Feakes D.A., Hawthorne M.F. et al. // Proc. Nati. Acad. Sci. USA. 1992. V. 89. P. 9039. https://doi.org/10.1073/pnas.89.19.9039
  25. 25. Waller R.C., Booth R.E., Feakes D.A. // J. Inorg. Biochem. 2013. V. 124. P. 11. https://doi.org/10.1016/j.jinorgbio.2013.03.007
  26. 26. Avdeeva V.V., Kubasov A.S., Korolenko S.E. et al. // Russ. J. Inorg. Chem. 2022. V. 67. P. 1169. https://doi.org/10.1134/S0036023622080022
  27. 27. Avdeeva V.V., Kubasov A.S., Nikiforova S.E. et al. // Russ. J. Inorg. Chem. 2023. V.68. P. 1406. https://doi.org/10.1134/S0036023623601794
  28. 28. Il’inchik E.A., Polyanskaya T.M., Drozdova M.K. et al. // Russ. J. Gen. Chem. 2005. V. 75. P. 1545. https://doi.org/10.1007/s11176-005-0464-y
  29. 29. Avdeeva V.V., Kubasov A.S., Korolenko S.E. et al. // Polyhedron. 2022. V. 217. P. 115740. https://doi.org/10.1016/j.poly.2022.115740
  30. 30. Avdeeva V.V., Privalov V.I., Kubasov A.S. et al. // Inorg. Chim. Acta. 2023. V. 555. P. 121564. https://doi.org/10.1016/j.ica.2023.121564
  31. 31. Miller H.C., Miller N.E., Muetterties E.L. // J. Am. Chem. Soc. 1963. V. 85. P. 3885. https://doi.org/10.1021/ja00906a033
  32. 32. Marcus Y. // J. Phys. Chem. 1987. V. 91. P. 4422. https://doi.org/10.1016/S0167-7322 (97)00090-1
  33. 33. Gutmann V. // Coord. Chem. Rev. 1976. V. 18. P. 225. https://doi.org/10.1016/S0010-8545 (00)82045-7
  34. 34. Zhang J., Zhang M., Zhao Y. et al. // J. Comput. Chem. 2006. V. 27. P. 1817. https://doi.org/10.1002/jcc.20511
  35. 35. Kubasov A.S., Novikov I.V., Starodubets P.A. et al. // Russ. J. Inorg. Chem. 2022. V. 67. P. 984. https://doi.org/10.1134/S0036023622070130
  36. 36. Avdeeva V.V., Malinina E.A., Vologzhanina A.V. et al. // Inorg. Chim. Acta. 2020. V. 509. P. 119693.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library