- PII
- 10.31857/S0044457X24050038-1
- DOI
- 10.31857/S0044457X24050038
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 69 / Issue number 5
- Pages
- 672-680
- Abstract
- Low-dimensional flakes of transitional metal dichalcogenides TaX2 (X = S, Se, Te), VSe2 and NbSe2 were acquired using liquid-phase exfoliation process. Hansen solubility parameters of those dispersions were estimated by measuring extinction in a number of various liquid environments. Amount of low-dimensional particles of dichalcogenides in a sample increases with decrease of Hansen distance between dichalcogenide and exfoliation medium. We propose a method to qualitatively estimate the impact exfoliation medium has on the size of forming particles and demonstrate how decrease of the absolute value of δpolar and δhydrogen in examined systems leads to decrease in size of forming flakes.
- Keywords
- слоистые дихалькогениды переходных элементов параметры растворимости Хансена жидкофазная эксфолиация
- Date of publication
- 17.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 8
References
- 1. Coleman J.N., Lotya M., O’Neill A. et al. // Science. 2011. V. 331. № 6017. Р. 568. https://doi.org/10.1126/science.1194975
- 2. Hildebrand H.J. Solubility of Non-electrolytes. N.Y.: Reinhold Publ. Corp., 1936. 203 p.
- 3. Süß S., Sobisch T., Peukert W. et al. // Adv. Powder Technol. 2018. V. 29. № 7. P. 1550. https://doi.org/10.1016/j.apt.2018.03.018
- 4. Venkatram Sh., Kim Ch., Chandrasekaran A., Ramprasad R. // J. Chem. Inf. Model. 2019. V. 59. № 10. P. 4188. https://doi.org/10.1021/acs.jcim.9b00656
- 5. Садовников С.И. // Журн. неорган. химии. 2023. V. 68. № 3. P. 411. https://doi.org/10.31857/S0044457X22601559
- 6. Mathieu D. // ACS Omega. 2018. V. 3. № 12. P. 17049. https://doi.org/10.1021/acsomega.8b02601
- 7. Gilliam M.S., Yousaf A., Guo Y., et al. // Langmuir. 2021. V. 37. № 3. Р. 1194. https://doi.org/10.1021/acs.langmuir.0c03138
- 8. Cunningham G., Lotya M., Cucinotta C.S. et al. // ACS Nano. 2012. V. 6. № 4. P. 3468. https://doi.org/10.1021/nn300503e
- 9. Kumar S., Pratap S., Joshi N. et al. // Micro and Nanostructures. 2023. V. 181. P. 207627. https://doi.org/10.1016/j.micrna.2023.207627
- 10. Eaglesham D.J., Withers R.L., Bird D.M. // J. Phys. C: Solid State Phys. 1986. V. 19. № 3. P. 359. https://doi.org/10.1088/0022–3719/19/3/006
- 11. Xi X., Zhao L., Wang Z. et al. // Nature Nanotech. 2015. V. 10. P. 765. https://doi.org/10.1038/nnano.2015.143
- 12. Zhou L., Sun Ch., Li X. et al. // Nano Express. 2020. V. 15. P. 20. https://doi.org/10.1186/s11671-020-3250-1
- 13. Mahajan M., Kallatt S., Dandu M. et al. // Commun. Phys. 2019. V. 2. Р. 88. https://doi.org/10.1038/s42005-019-0190-0
- 14. Wu J., Peng J., Yu Zh. et al. // J. Am. Chem. Soc. 2018. V. 140. № 1. Р. 493. https://doi.org/10.1021/jacs.7b11915
- 15. Yang W., Gan L., Li H. et al. // Inorg. Chem. Front. 2016. V. 3. Р. 433. https://doi.org/10.1039/C5QI00251F
- 16. Jia Y., Liao Y., Cai H. // Nanomaterials. 2022. V. 12. P. 2075. https://doi.org/10.3390/nano12122075
- 17. Wang J., Guo C., Guo W. et al. // Chinese Phys. B. 2019. V. 28. № 4. Р. 046802. https://doi.org/10.1088/1674-1056/28/4/046802
- 18. Li H., Tan Y., Liu P. et al. // Adv. Mater. 2016. V. 28. № 40. P. 8945. https://doi.org/10.1002/adma.201602502
- 19. Wang F., Mao J. // Mater. Horiz. 2023. V. 10. № 5. P. 1780. https://doi.org/10.1039/D3MH00072A
- 20. Никонов К.С., Ильясов А.С., Бреховских М.Н. // Журн. неорган. химии. 2020. Т. 65. № 9. С. 1222. https://doi.org/10.1134/S0036023620090120
- 21. Yang L., Zhao R., Wu D. et al. // Sensors. 2021. V. 21. № 1. P. 239. https://doi.org/10.3390/s21010239
- 22. Hansen Ch.M. Hansen Solubility Parameters: A User’s Handbook. Boca Raton, London, NY: CRC Press, 2007. 544 p.
- 23. Segets D., Gradl J., Taylor R.К. et al. // ACS Nano. 2009. V. 3. № 7. Р. 1703. https://doi.org/10.1021/nn900223b