RAS Chemistry & Material ScienceЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

Synthesis of La2Ti2O7 nanoscale powder and ceramics based on it by sol-gel and spark plasma sintering

PII
10.31857/S0044457X24040198-1
DOI
10.31857/S0044457X24040198
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 69 / Issue number 4
Pages
649-656
Abstract
The application of ceramics as matrices for the immobilization of radionuclides for the purpose of their safe long-term disposal or beneficial use is being studied with an emphasis on phase stability, structural integrity, hydrolytic stability, etc. In this work, a combined approach was investigated, based on the sol-gel citrate synthesis of nanosized La2Ti2O7 powder and its subsequent spark plasma sintering to produce dense ceramics. The phase composition and structure of the nanosized La2Ti2O7 powder and ceramic samples based on it, obtained in the temperature range of 900–1300 °C, were studied by XRD and SEM. It has been shown that the powder synthesis conditions ensure the formation of nanosized crystalline La2Ti2O7 grains, whose consolidation under spark plasma heating conditions proceeds with a change in the phase composition from single-phase La2Ti2O7 of monoclinic structure to orthorhombic with an admixture of LaTiO3 at temperatures above 1200 °C. It was revealed that the change in the ceramic structure is accompanied by the formation of non-porous and defect-free monolithic samples. It was determined that such a change leads to an increase in relative density (81.3–95.7%) and compressive strength (78–566 MPa) of the ceramic samples. However, the hydrolytic stability of the ceramics decreases, as indicated by an increase in the leaching rate of La3+ from 10–7 to 10–5 g/cm2·day. The obtained results are useful for the systematic study of materials suitable for immobilization technologies of radioactive waste in ceramics.
Keywords
керамика радионуклиды обращение с радиоактивными отходами золь-гель синтез ИПС
Date of publication
15.04.2024
Year of publication
2024
Number of purchasers
0
Views
43

References

  1. 1. Orlova A.I., Ojovan M.I. // Materials (Basel). 2019. V. 12. № 16. P. 2638. https://doi.org/10.3390/ma12162638
  2. 2. Wang Z., Zhou G., Jiang D. et al. // J. Adv. Ceram. 2018. V. 7. № 4. P. 289. https://doi.org/10.1007/s40145-018-0287-z
  3. 3. Subramanian M.A., Aravamudan G., Subba Rao G.V. // Prog. Solid State Chem. 1983. V. 15. № 2. P. 55. https://doi.org/10.1016/0079-6786 (83)90001-8
  4. 4. Shrivastava O.P., Kumar N., Sharma I.B. // Bull. Mater. Sci. 2004. V. 27. № 2. P. 121. https://doi.org/10.1007/BF02708493
  5. 5. Wang J., Ghosh D.B., Zhang Z. // Materials (Basel). 2023. V. 16. № 14. P. 4985. https://doi.org/10.3390/ma16144985
  6. 6. Papynov E.K., Belov A.A., Shichalin O.O. et al. // Russ. J. Inorg. Chem. 2021. V. 66. № 5. P. 645. https://doi.org/10.1134/S0036023621050132
  7. 7. Ewing R.C., Weber W.J., Lian J. // J. Appl. Phys. 2004. V. 95. № 11. P. 5949. https://doi.org/10.1063/1.1707213
  8. 8. Lutique S., Staicu D., Konings R.J.M. et al. // J. Nucl. Mater. 2003. V. 319. P. 59. https://doi.org/10.1016/S0022-3115 (03)00134-X
  9. 9. Xue J., Zhang K., He Z. et al. // Materials (Basel). 2019. V. 12. № 7. P. 1163. https://doi.org/10.3390/ma12071163
  10. 10. Patwe S.J., Tyagi A.K. // Ceram. Int. 2006. V. 32. № 5. P. 545. https://doi.org/10.1016/j.ceramint.2005.04.009
  11. 11. Panghal A., Kumar Y., Singh F. et al. // Ceram. Int. 2023. V. 49. № 8. P. 12191. https://doi.org/10.1016/j.ceramint.2022.12.071
  12. 12. Mandal B.P., Pandey M., Tyagi A.K. // J. Nucl. Mater. 2010. V. 406. № 2. P. 238. https://doi.org/10.1016/j.jnucmat.2010.08.042
  13. 13. Liu K., Zhang K., Deng T. et al. // Ceram. Int. 2021. V. 47. № 10. P. 13363. https://doi.org/10.1016/j.ceramint.2021.01.193
  14. 14. Liu K., Zhang K., Deng T. et al. // Ceram. Int. 2020. V. 46. № 10. P. 16987. https://doi.org/10.1016/j.ceramint.2020.03.283
  15. 15. Fan L., Shu X., Lu X. et al. // Ceram. Int. 2015. V. 41. № 9. P. 11741. https://doi.org/10.1016/j.ceramint.2015.05.140
  16. 16. Fan L., Shu X., Ding Y. et al. // J. Nucl. Mater. 2015. V. 456. P. 467. https://doi.org/10.1016/j.jnucmat.2014.10.025
  17. 17. Danks A.E., Hall S.R., Schnepp Z. // Mater. Horizons. 2016. V. 3. № 2. P. 91. https://doi.org/10.1039/c5mh00260e
  18. 18. Belov A.A., Shichalin O.O., Papynov E.K. et al. // J. Compos. Sci. 2023. V. 7. № 10. P. 421. https://doi.org/10.3390/jcs7100421
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library