ОХНМЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

Трансформация поверхности ультравысокотемпературной керамики HfB2–SiC–C(графен) в высокоскоростном потоке диссоциированного азота

Код статьи
10.31857/S0044457X24040156-1
DOI
10.31857/S0044457X24040156
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 69 / Номер выпуска 4
Страницы
594-606
Аннотация
С целью изучения перспективности ультравысокотемпературных керамических материалов HfB2–30 об. % SiC, модифицированных низкими количествами восстановленного оксида графена, для создания авиакосмической техники, предназначенной для применения в атмосферах на основе N2, исследовано воздействие на образец высокоскоростного потока диссоциированного азота. Установлено, что при выбранных условиях воздействия в ходе ступенчатого повышения мощности анодного питания плазмотрона и, соответственно, воздействующего теплового потока при определенных параметрах процесса происходит резкий рост температуры поверхности с ~1750 до 2000–2100°C. При этом дальнейшее повышение теплового потока не оказывает очевидного и пропорционального воздействия на температуру поверхности образца, что может свидетельствовать о ее высокой каталитичности по отношению к реакциям поверхностной рекомбинации атомарного азота. Показано, что поверхностные слои материала подвергаются химической трансформации (удаление кремнийсодержащих веществ, образование новой фазы на основе HfN), которая сопровождается значительным изменением микроструктуры (образование дендритоподобных структур), что влияет на оптические и каталитические характеристики поверхности.
Ключевые слова
UHTC графен HfB2 SiC высокоэнтальпийный поток азота индукционный плазмотрон
Дата публикации
17.09.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
10

Библиография

  1. 1. Simonenko E.P., Sevast’yanov D.V., Simonenko N.P. et al. // Russ. J. Inorg. Chem. 2013. V. 58. № 14. P. 1669. https://doi.org/10.1134/S0036023613140039
  2. 2. Zhao K., Ye F., Cheng L. et al. // J. Eur. Ceram. Soc. 2023. V. 43. № 16. P. 7241. https://doi.org/10.1016/j.jeurceramsoc.2023.07.046
  3. 3. Thimmappa S.K., Golla B.R., VV B.P. // Silicon. 2022. V. 14. № 18. P. 12049. https://doi.org/10.1007/s12633-022-01945-8
  4. 4. Nisar A., Hassan R., Agarwal A. et al. // Ceram. Int. 2022. V. 48. № 7. P. 8852. https://doi.org/10.1016/j.ceramint.2021.12.199
  5. 5. Aguirre T.G., Lamm B.W., Cramer C.L. et al. // Ceram. Int. 2022. V. 48. № 6. P. 7344. https://doi.org/10.1016/j.ceramint.2021.11.314
  6. 6. Sonber J.K., Murthy T.S.R.C., Majumdar S. et al. // Mater. Perform. Charact. 2021. V. 10. № 2. P. 20200133. https://doi.org/10.1520/MPC20200133
  7. 7. Golla B.R., Mukhopadhyay A., Basu B. et al. // Prog. Mater. Sci. 2020. V. 111. P. 100651. https://doi.org/10.1016/j.pmatsci.2020.100651
  8. 8. Verma V., Cheverikin V., Câmara Cozza R. // Int. J. Appl. Ceram. Technol. 2020. V. 17. № 6. P. 2509. https://doi.org/10.1111/ijac.13567
  9. 9. Ni D., Cheng Y., Zhang J. et al. // J. Adv. Ceram. 2022. V. 11. № 1. P. 1. https://doi.org/10.1007/s40145-021-0550-6
  10. 10. Vorotilo S., Potanin A.Y., Iatsyuk I. V. et al. // Adv. Eng. Mater. 2018. V. 20. № 8. https://doi.org/10.1002/adem.201800200
  11. 11. Savino R., Criscuolo L., Di Martino G.D. et al. // J. Eur. Ceram. Soc. 2018. V. 38. № 8. P. 2937. https://doi.org/10.1016/j.jeurceramsoc.2017.12.043
  12. 12. Jin X., Fan X., Lu C. et al. // J. Eur. Ceram. Soc. 2018. V. 38. № 1. P. 1. https://doi.org/10.1016/j.jeurceramsoc.2017.08.013
  13. 13. Astapov A.N., Zhestkov B.E., Senyuev I.V. et al. // Methodology of studying high-velocity plasma flow impact on high-temperature materials, in: 2023: p. 210009. https://doi.org/10.1063/5.0109458
  14. 14. Tang S., Hu C. // J. Mater. Sci. Technol. 2017. V. 33. № 2. P. 117. https://doi.org/10.1016/j.jmst.2016.08.004
  15. 15. Ye Z., Zeng Y., Xiong X. et al. // J. Eur. Ceram. Soc. 2023. V. 43. № 15. P. 6718. https://doi.org/10.1016/j.jeurceramsoc.2023.07.043
  16. 16. Bianco G., Nisar A., Zhang C. et al. // J. Am. Ceram. Soc. 2022. V. 105. № 3. P. 1939. https://doi.org/10.1111/jace.18218
  17. 17. Han T., Huang J., Sant G. et al. // J. Am. Ceram. Soc. 2022. V. 105. № 11. P. 6851. https://doi.org/10.1111/jace.18636
  18. 18. Jin X., He R., Zhang X. et al. // J. Alloys Compd. 2013. V. 566. P. 125. https://doi.org/10.1016/j.jallcom.2013.03.067
  19. 19. Jin H., Zhang S., Hao Y. et al. // Ceram. Int. 2023. V. 49. № 17. P. 28532. https://doi.org/10.1016/j.ceramint.2023.06.062
  20. 20. Kováčová Z., Orovčík Ľ., Sedláček J. et al. // J. Eur. Ceram. Soc. 2020. V. 40. № 12. P. 3829. https://doi.org/10.1016/j.jeurceramsoc.2020.03.060
  21. 21. Mungiguerra S., Cecere A., Savino R. et al. // Corros. Sci. 2021. V. 178. P. 109067. https://doi.org/10.1016/j.corsci.2020.109067
  22. 22. Squire T.H., Marschall J. // J. Eur. Ceram. Soc. 2010. V. 30. № 11. P. 2239. https://doi.org/10.1016/j.jeurceramsoc.2010.01.026
  23. 23. Monteverde F., Savino R. // J. Am. Ceram. Soc. 2012. V. 95. № 7. P. 2282. https://doi.org/10.1111/j.1551-2916.2012.05226.x
  24. 24. Zhao L., Hou C., Jin X. et al. // Adv. Eng. Mater. 2023. V. 25. № 8. P. 2201313. https://doi.org/10.1002/adem.202201313
  25. 25. Chen H., Xiang H., Dai F.-Z. et al. // J. Mater. Sci. Technol. 2019. V. 35. № 10. P. 2404. https://doi.org/10.1016/j.jmst.2019.05.059
  26. 26. Wang S., Chen H., Li Y. et al. // J. Eur. Ceram. Soc. 2023. V. 43. № 9. P. 3905. https://doi.org/10.1016/j.jeurceramsoc.2023.02.070
  27. 27. Povolny S.J., Seidel G.D., Tallon C. // Ceram. Int. 2022. V. 48. № 8. P. 11502. https://doi.org/10.1016/j.ceramint.2022.01.006
  28. 28. Nisar A., Zhang C., Boesl B. et al. // Ceram. Int. 2020. V. 46. № 16. P. 25845. https://doi.org/10.1016/j.ceramint.2020.07.066
  29. 29. Hoque M.S. Bin, Milich M., Akhanda M.S. et al. // J. Eur. Ceram. Soc. 2023. V. 43. № 11. P. 4581. https://doi.org/10.1016/j.jeurceramsoc.2023.03.065
  30. 30. Popov O., Vishnyakov V. // Materialia. 2023. V. 32. P. 101890. https://doi.org/10.1016/j.mtla.2023.101890
  31. 31. Meng J., Fang H., Wang H. et al. // Int. J. Appl. Ceram. Technol. 2023. V. 20. № 3. P. 1350. https://doi.org/10.1111/ijac.14336
  32. 32. Bai Y., Wang P., Zhang B. et al. // J. Eur. Ceram. Soc. 2022. V. 42. № 7. P. 3107. https://doi.org/10.1016/j.jeurceramsoc.2022.02.030
  33. 33. Bannykh D., Utkin A., Baklanova N. // Int. J. Refract. Met. Hard Mater. 2019. V. 84. P. 105023. https://doi.org/10.1016/j.ijrmhm.2019.105023
  34. 34. Bannykh D., Utkin A., Baklanova N. // Ceram. Int. 2018. V. 44. № 11. P. 12451. https://doi.org/10.1016/j.ceramint.2018.04.035
  35. 35. Simonenko E.P., Simonenko N.P., Sevastyanov V.G. et al. // Russ. J. Inorg. Chem. 2019. V. 64. № 14. P. 1697. https://doi.org/10.1134/S0036023619140079
  36. 36. Venkatesh V.S.S., Prasad K., Patnaik L. // Silicon. 2023. V. 15. № 7. P. 3339. https://doi.org/10.1007/s12633-022-02263-9
  37. 37. Wei Y., Ye F., Cheng L. // J. Eur. Ceram. Soc. 2023. V. 43. № 12. P. 5183. https://doi.org/10.1016/j.jeurceramsoc.2023.04.046
  38. 38. Jyoti, Tiwari M., Singh A. et al. // Vacuum. 2023. V. 214. P. 112199. https://doi.org/10.1016/j.vacuum.2023.112199
  39. 39. Simonenko E.P., Simonenko N.P., Sevastyanov V.G. et al. // Russ. J. Inorg. Chem. 2018. V. 63. № 14. P. 1772. https://doi.org/10.1134/S003602361814005X
  40. 40. Binner J., Porter M., Baker B. et al. // Int. Mater. Rev. 2019. P. 1. https://doi.org/10.1080/09506608.2019.1652006
  41. 41. Chen Y. // Ceram. – Silikaty. 2023. V. 67. № 3. P. 260. https://doi.org/10.13168/cs.2023.0026
  42. 42. Simonenko E.P., Simonenko N.P., Kolesnikov A.F. et al. // J. Eur. Ceram. Soc. 2022. V. 42. № 1. P. 30. https://doi.org/10.1016/j.jeurceramsoc.2021.09.020
  43. 43. Simonenko E.P., Simonenko N.P., Kolesnikov A.F. et al. // Russ. J. Inorg. Chem. 2021. V. 66. № 9. P. 1405. https://doi.org/10.1134/S003602362109014X
  44. 44. Marschall J., Pejakovic D., Fahrenholtz W.G. et al. // J. Thermophys. Heat Transf. 2012. V. 26. № 4. P. 559. https://doi.org/10.2514/1.T3798
  45. 45. Simonenko E.P., Simonenko N.P., Kolesnikov A.F. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 12. P. 2050. https://doi.org/10.1134/S0036023622601866
  46. 46. Sevast’yanov V.G., Simonenko E.P., Gordeev A.N. et al. // Russ. J. Inorg. Chem. 2013. V. 58. № 11. P. 1269. https://doi.org/10.1134/S003602361311017X
  47. 47. Simonenko E.P., Simonenko N.P., Gordeev A.N. et al. // Russ. J. Inorg. Chem. 2018. V. 63. № 4. P. 421. https://doi.org/10.1134/S0036023618040186
  48. 48. Simonenko E.P., Simonenko N.P., Gordeev A.N. et al. // J. Eur. Ceram. Soc. 2020. V. 40. № 4. P. 1093. https://doi.org/10.1016/j.jeurceramsoc.2019.11.023
  49. 49. Sevastyanov V.G., Simonenko E.P., Gordeev A.N. et al. // Russ. J. Inorg. Chem. 2014. V. 59. № 11. P. 1298. https://doi.org/10.1134/S0036023614110217
  50. 50. Monteverde F., Savino R., De Stefano Fumo M. // Corros. Sci. 2011. V. 53. № 3. P. 922. https://doi.org/10.1016/j.corsci.2010.11.018
  51. 51. Justin J.-F., Julian-Jankowiak A., Guérineau V. et al. // CEAS Aeronaut. J. 2020. V. 11. № 3. P. 651. https://doi.org/10.1007/s13272-020-00445-y
  52. 52. Parthasarathy T.A., Rapp R.A., Opeka M. et al. // J. Am. Ceram. Soc. 2012. V. 95. № 1. P. 338. https://doi.org/10.1111/j.1551-2916.2011.04927.x
  53. 53. Cecere A., Savino R., Allouis C. et al. // Int. J. Heat Mass Transf. 2015. V. 91. P. 747. https://doi.org/10.1016/j.ijheatmasstransfer.2015.08.029
  54. 54. Kolesnikov A.F., Kuznetsov N.T., Murav’eva T.I. et al. // Fluid Dyn. 2022. V. 57. № 4. P. 513. https://doi.org/10.1134/S0015462822040061
  55. 55. Simonenko E.P., Kolesnikov A.F., Chaplygin A.V. et al. // Int. J. Mol. Sci. 2023. V. 24. № 17. P. 13634. https://doi.org/10.3390/ijms241713634
  56. 56. Monteverde F., Savino R. // J. Eur. Ceram. Soc. 2007. V. 27. № 16. P. 4797. https://doi.org/10.1016/j.jeurceramsoc.2007.02.201
  57. 57. Savino R., De Stefano Fumo M., Silvestroni L. et al. // J. Eur. Ceram. Soc. 2008. V. 28. № 9. P. 1899. https://doi.org/10.1016/j.jeurceramsoc.2007.11.021
  58. 58. Alosime E.M., Alsuhybani M.S., Almeataq M.S. // Materials (Basel). 2021. V. 14. № 2. P. 392. https://doi.org/10.3390/ma14020392
  59. 59. Simonenko E.P., Simonenko N.P., Kolesnikov A.F. et al. // Materials (Basel). 2022. V. 15. № 23. P. 8507. https://doi.org/10.3390/ma15238507
  60. 60. Simonenko E.P., Simonenko N.P., Papynov E.K. et al. // Russ. J. Inorg. Chem. 2018. V. 63. № 1. P. 1. https://doi.org/10.1134/S0036023618010187
  61. 61. Simonenko E.P., Simonenko N.P., Gordeev A.N. et al. // J. Sol-Gel Sci. Technol. 2019. V. 92. № 2. P. 386. https://doi.org/10.1007/s10971-019-05029-9
  62. 62. Gordeev A. // VKI, RTO AVT/VKI Spec. Course Meas. Tech. High Enthalpy Plasma Flows 1999. https://apps.dtic.mil/sti/citations/ADP010736
  63. 63. ASTM E422-05(2016). Standard Test Method for Measuring Heat Flux Using a Water-Cooled Calorimeter // ASTM International, West Conshohocken, PA, 2016.
  64. 64. Holleck H. // J. Nucl. Mater. 1967. V. 21. № 1. P. 14. https://doi.org/10.1016/0022-3115 (67)90724-6
  65. 65. Wyckoff R.W.G. // Cryst. Struct. 1963. V. 1. P. 85.
  66. 66. Aigner K., Lengauer W., Rafaja D. et al. // J. Alloys Compd. 1994. V. 215. № 1–2. P. 121. https://doi.org/10.1016/0925-8388 (94)90828-1
  67. 67. Lengauer W., Binder S., Aigner K. et al. // J. Alloys Compd. 1995. V. 217. № 1. P. 137. https://doi.org/10.1016/0925-8388 (94)01315-9
  68. 68. Nakashima S., Harima H. // Phys. Status Solidi. 1997. V. 162. № 1. P. 39. https://doi.org/10.1002/1521-396X (199707)162:13.0.CO;2-L
  69. 69. Ghosh D., Subhash G., Orlovskaya N. // Acta Mater. 2008. V. 56. № 18. P. 5345. https://doi.org/10.1016/j.actamat.2008.07.031
  70. 70. Guo J., Zhang L., Fujita T. et al. // Phys. Rev. B. 2010. V. 81. № 6. P. 060102. https://doi.org/10.1103/PhysRevB.81.060102
  71. 71. Shapkin N.P., Papynov E.K., Shichalin O.O. et al. // Russ. J. Inorg. Chem. 2021. V. 66. № 5. P. 629. https://doi.org/10.1134/S0036023621050168
  72. 72. Lin J., Jin H., Ge X. et al. // Mater. Today Commun. 2021. V. 28. P. 102540. https://doi.org/10.1016/j.mtcomm.2021.102540
  73. 73. Zhan-Hui D., Li-Xia Q., Bin Y. et al. // Chinese Phys. Lett. 2010. V. 27. № 8. P. 086106. https://doi.org/10.1088/0256-307X/27/8/086106
  74. 74. Gu Z., Hu C., Fan X. et al. // Acta Mater. 2014. V. 81. P. 315. https://doi.org/10.1016/j.actamat.2014.08.040
  75. 75. Wipf H., Klein M.V., Williams W.S. // Phys. Status Solidi. 1981. V. 108. № 2. P. 489. https://doi.org/10.1002/pssb.2221080225
  76. 76. Fan S., Singh S., Xu X. et al. // npj Quantum Mater. 2022. V. 7. № 1. P. 32. https://doi.org/10.1038/s41535-022-00436-8
  77. 77. Soignard E., McMillan P.F. // Chem. Mater. 2004. V. 16. № 18. P. 3533. https://doi.org/10.1021/cm049797+
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека