RAS Chemistry & Material ScienceЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

Functional Design Of Peroral Delivery Systems Based On Polymethylsesquoxane Hydrogels For The Therapy Of Iron Deficiency Anemia

PII
10.31857/S0044457X24040143-1
DOI
10.31857/S0044457X24040143
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 69 / Issue number 4
Pages
581-593
Abstract
Anemia is a prevalent circulatory system illness that is severely harmful to patients. The development of novel oral delivery systems for iron compounds with enhanced biopharmaceutical properties is vital considering the severe side effects associated with oral medication use. We believe incorporating iron compounds to polymethylsilsesquioxane hydrogels is a promising approach. According to previously published materials, such a system should have great biocompatibility and a capacity for iron compounds, and it may be able to release contents into the intestine. This study investigated polymethysilsesquioxane hydrogels with varying silicate unit concentrations. Potential iron-containing medicines were iron(III) chloride (FeCl3∙6H2O)) and iron(II) D-gluconate. All hydrogels were found to have nearly 100% sorption activity for a saturated solution of FeCl3∙6H2O (0.27 M) during the experiment, but only around 30% sorption capacity was found for a saturated solution of D-gluconate (0.24 M). A specific field of study was the distribution of iron atoms within hydrogels. It has been established that the largest regions devoid of iron atoms are observed in a hydrogel with a maximum quantity of inorganic units. The outcomes provide opportunities for the precise engineering of polymer matrix structures for iron compound delivery.
Keywords
железодефицитная анемия гидрогели система доставки лекарств
Date of publication
15.04.2024
Year of publication
2024
Number of purchasers
0
Views
50

References

  1. 1. Trivedi R., Barve K. // Int. J. Pharm. 2021. V. 601. P. 120590. https://doi.org/10.1016/j.ijpharm.2021.120590
  2. 2. Zhu A., Kaneshiro M., Kaunitz J.D. // Dig. Dis. Sci. 2010. V. 55. P. 548. https://doi.org/10.1007/s10620-009-1108-6
  3. 3. Singhal S.R., Kadian V., Singh S. et al. // IJOGR. 2015. V. 2. P. 155. https://doi.org/10.5958/2394-2754.2015.00005.3
  4. 4. Laleli Koc B., Haydaroğlu Y. et al. // ACH Med. J. 2023. V. 2. P. 221. https://doi.org/10.5505/achmedj.2023.36855
  5. 5. Martínez Francés A., Martínez-Bujanda J.J. // Curr. Med. Res. Opin. 2020. V. 36. P. 613. https://doi.org/10.1080/03007995.2020.1716702
  6. 6. Gómez-Ramírez S., Brilli E., Tarantino G., Muñoz M. // Pharmaceuticals. 2018. V. 11. P. 40097. https://doi.org/10.3390/ph11040097
  7. 7. Zhu A., Kaneshiro M., Kaunitz J.D. // Dig. Dis. Sci. 2010. V. 55. P. 548. https://doi.org/10.1007/s10620-009-1108-6
  8. 8. Camaschella C. // Blood Rev. 2017. V. 31. P. 225. https://doi.org/10.1016/j.blre.2017.02.004
  9. 9. Elstrott B., Khan L., Olson S. et al. // Eur. J. Haematol. 2020. V. 104. P. 153. https://doi.org/10.1111/ejh.13345
  10. 10. Zakharova L.Y., Maganova F.I., Sinyashin K.O. et al. // Russ. J. Gen. Chem. 2023. V. 93. P. 1867. https://doi.org/10.1134/S1070363223070253
  11. 11. Lin H.M., Deng S.G., Huang S.B. et al. // J. Sci. Food Agric. 2016. V. 96. P. 2839. https://doi.org/10.1002/jsfa.7452
  12. 12. Кононова И.Н., Карева Е.Н. // РМЖ. Мать и дитя. 2022. №1. С. 18. https://doi.org/10.32364/2618-8430-2022-5-1-18-27
  13. 13. Fathy M.M., Fahmy H.M., Balah A.M.M. et al. // Life Sci. 2019. V. 234. P. 116787. https://doi.org/10.1016/j.lfs.2019.116787
  14. 14. Zvereva M.V., Aleksandrova G.P. // Russ. J. Gen. Chem. 2023. V. 93. P. 347. https://doi.org/10.1134/S1070363223140141
  15. 15. Cui J., Li Y., Yu P. et al. // Int. J. Biol. Macromol. 2018. V. 108. P. 412. https://doi.org/10.1016/j.ijbiomac.2017.12.033
  16. 16. Wang P.P., Zhang Y., Dai L.Q. et al. // Chin. J. Integr. Med. 2007. V. 13. P. 297. https://doi.org/10.1007/s11655-007-0297-0
  17. 17. Rahul B.S., Lakshmi S., Sneha Letha S. et al. // Colloids Surf., B: Biointerfaces. 2020. V. 195. P. 111247. https://doi.org/10.1016/j.colsurfb.2020.111247
  18. 18. Massana Roquero D., Othman A. et al. // Mater. Adv. 2022. V. 3. P. 1849. https://doi.org/10.1039/d1ma00959a
  19. 19. Park S.H., Kim R.S., Stiles W.R. et al. // Adv. Sci. 2022. V. 9. P. 872. https://doi.org/10.1002/advs.202200872
  20. 20. Diab R., Canilho N., Pavel I.A. et al. // Adv. Colloid Interface Sci. 2017. V. 249. P. 346. https://doi.org/10.1016/j.cis.2017.04.005
  21. 21. Abbasi F., Mirzadeh H., Katbab A.A. // Polym. Int. 2021. V. 50. P. 1279. https://doi.org/10.1002/pi.783
  22. 22. Kon’kova T.V., Gordienko M.G., Alekhina M.B., Men’Shutina N.V. // Russ. J. Inorg. Chem. 2014. V. 59. P. 1214. https://doi.org/10.1134/S0036023614110114
  23. 23. Dolinina E.S., Parfenyuk E.V. // Russ. J. Inorg. Chem. 2022. V. 67. P. 401. https://doi.org/10.1134/S0036023622030068
  24. 24. Ciprioti S.V., Naviglio D., Gallo M. et al. // Macromol. Symp. 2020. V. 389. P. 84. https://doi.org/10.1002/masy.201900084
  25. 25. Pat. UA 27434. 1994.
  26. 26. Howell C.A., Mikhalovsky S.V., Markaryan E.N., Khovanov A.V. // Scientific Reports. 2019. V. 9. № 1. P. 5629. https://doi.org/10.1038/s41598-019-42176-z
  27. 27. Meshkov I.B., Mazhorova N.G., Zhemchugov P.V. et al. // INEOS Open. 2019. V. 2. P. 140. https://doi.org/10.32931/io1920a
  28. 28. Protsak I.S., Morozov Y.M., Dong W. et al. // Nanoscale Res. Lett. 2019. V. 14. P. 160. https://doi.org/10.1186/s11671-019-2982-2
  29. 29. Kloprogge J.T., Frost R.L. // Vibr. Spectrosc. 2000. V. 23. P. 119. https://doi.org/10.1016/S0924-2031 (00)00056-4
  30. 30. Faustova Z.V., Slizhov Y.G. // Inorg. Mater. 2017. V. 53. P. 287. https://doi.org/10.1134/S0020168517030050
  31. 31. Skuredina A.A., Danilov M.R., Le-Deygen I.M., Kudryashova E.V. // Moscow University Chemistry Bulletin. 2018. V. 73. P. 192. https://doi.org/10.3103/S0027131418040107
  32. 32. Ohta K.M., Fuji M., Takei T., Chikazawa M. // Eur. J. Pharm. Sci. 2005. V. 26. P. 87. https://doi.org/10.1016/j.ejps.2005.05.002
  33. 33. Nikolic V., Ilic D., Nikolic L. et al. // Savremene Tehnologije. 2014. V. 3. P. 16. https://doi.org/10.5937/savteh1402016N
  34. 34. Kurczewska J., Schroeder G. Cent. // Eur. J. Chem. 2011. V. 9. P. 41. https://doi.org/10.2478/s11532-010-0131-y
  35. 35. Wang J., Zhou Q., Song D. et al. // Sci. Technol. 2015. V. 76. P. 501. https://doi.org/10.1007/s10971-015-3800-7
  36. 36. Catauro M., Naviglio D., Risoluti R. et al. // J. Therm. Anal. Calorim. 2018. V. 133. P. 1085. https://doi.org/10.1007/s10973-018-7137-7
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library