- Код статьи
- 10.31857/S0044457X24040143-1
- DOI
- 10.31857/S0044457X24040143
- Тип публикации
- Статья
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том 69 / Номер выпуска 4
- Страницы
- 581-593
- Аннотация
- Предложен подход к созданию пероральных систем доставки препаратов железа для лечения железодефицитной анемии на основе полиметилсилсесквиоксановых гидрогелей с вариабельной структурой – биосовместимых и биодеградируемых носителей. Установлено, что гидрогели проявляют высокую сорбционную емкость по отношению к насыщенному раствору FeCl3 ∙ 6H2O (0.27 М), в то время как сорбционная способность по отношению к насыщенному раствору D-глюконата (0.24 М) ниже и составляет ~30%. Полученные системы доставки исследованы методами ИК- и УФ-спектроскопии, изучено распределение атомов железа по гидрогелям. Установлено, что полученные системы перспективны для дальнейшей разработки лекарственных формуляций.
- Ключевые слова
- железодефицитная анемия гидрогели система доставки лекарств
- Дата публикации
- 17.09.2025
- Год выхода
- 2025
- Всего подписок
- 0
- Всего просмотров
- 10
Библиография
- 1. Trivedi R., Barve K. // Int. J. Pharm. 2021. V. 601. P. 120590. https://doi.org/10.1016/j.ijpharm.2021.120590
- 2. Zhu A., Kaneshiro M., Kaunitz J.D. // Dig. Dis. Sci. 2010. V. 55. P. 548. https://doi.org/10.1007/s10620-009-1108-6
- 3. Singhal S.R., Kadian V., Singh S. et al. // IJOGR. 2015. V. 2. P. 155. https://doi.org/10.5958/2394-2754.2015.00005.3
- 4. Laleli Koc B., Haydaroğlu Y. et al. // ACH Med. J. 2023. V. 2. P. 221. https://doi.org/10.5505/achmedj.2023.36855
- 5. Martínez Francés A., Martínez-Bujanda J.J. // Curr. Med. Res. Opin. 2020. V. 36. P. 613. https://doi.org/10.1080/03007995.2020.1716702
- 6. Gómez-Ramírez S., Brilli E., Tarantino G., Muñoz M. // Pharmaceuticals. 2018. V. 11. P. 40097. https://doi.org/10.3390/ph11040097
- 7. Zhu A., Kaneshiro M., Kaunitz J.D. // Dig. Dis. Sci. 2010. V. 55. P. 548. https://doi.org/10.1007/s10620-009-1108-6
- 8. Camaschella C. // Blood Rev. 2017. V. 31. P. 225. https://doi.org/10.1016/j.blre.2017.02.004
- 9. Elstrott B., Khan L., Olson S. et al. // Eur. J. Haematol. 2020. V. 104. P. 153. https://doi.org/10.1111/ejh.13345
- 10. Zakharova L.Y., Maganova F.I., Sinyashin K.O. et al. // Russ. J. Gen. Chem. 2023. V. 93. P. 1867. https://doi.org/10.1134/S1070363223070253
- 11. Lin H.M., Deng S.G., Huang S.B. et al. // J. Sci. Food Agric. 2016. V. 96. P. 2839. https://doi.org/10.1002/jsfa.7452
- 12. Кононова И.Н., Карева Е.Н. // РМЖ. Мать и дитя. 2022. №1. С. 18. https://doi.org/10.32364/2618-8430-2022-5-1-18-27
- 13. Fathy M.M., Fahmy H.M., Balah A.M.M. et al. // Life Sci. 2019. V. 234. P. 116787. https://doi.org/10.1016/j.lfs.2019.116787
- 14. Zvereva M.V., Aleksandrova G.P. // Russ. J. Gen. Chem. 2023. V. 93. P. 347. https://doi.org/10.1134/S1070363223140141
- 15. Cui J., Li Y., Yu P. et al. // Int. J. Biol. Macromol. 2018. V. 108. P. 412. https://doi.org/10.1016/j.ijbiomac.2017.12.033
- 16. Wang P.P., Zhang Y., Dai L.Q. et al. // Chin. J. Integr. Med. 2007. V. 13. P. 297. https://doi.org/10.1007/s11655-007-0297-0
- 17. Rahul B.S., Lakshmi S., Sneha Letha S. et al. // Colloids Surf., B: Biointerfaces. 2020. V. 195. P. 111247. https://doi.org/10.1016/j.colsurfb.2020.111247
- 18. Massana Roquero D., Othman A. et al. // Mater. Adv. 2022. V. 3. P. 1849. https://doi.org/10.1039/d1ma00959a
- 19. Park S.H., Kim R.S., Stiles W.R. et al. // Adv. Sci. 2022. V. 9. P. 872. https://doi.org/10.1002/advs.202200872
- 20. Diab R., Canilho N., Pavel I.A. et al. // Adv. Colloid Interface Sci. 2017. V. 249. P. 346. https://doi.org/10.1016/j.cis.2017.04.005
- 21. Abbasi F., Mirzadeh H., Katbab A.A. // Polym. Int. 2021. V. 50. P. 1279. https://doi.org/10.1002/pi.783
- 22. Kon’kova T.V., Gordienko M.G., Alekhina M.B., Men’Shutina N.V. // Russ. J. Inorg. Chem. 2014. V. 59. P. 1214. https://doi.org/10.1134/S0036023614110114
- 23. Dolinina E.S., Parfenyuk E.V. // Russ. J. Inorg. Chem. 2022. V. 67. P. 401. https://doi.org/10.1134/S0036023622030068
- 24. Ciprioti S.V., Naviglio D., Gallo M. et al. // Macromol. Symp. 2020. V. 389. P. 84. https://doi.org/10.1002/masy.201900084
- 25. Pat. UA 27434. 1994.
- 26. Howell C.A., Mikhalovsky S.V., Markaryan E.N., Khovanov A.V. // Scientific Reports. 2019. V. 9. № 1. P. 5629. https://doi.org/10.1038/s41598-019-42176-z
- 27. Meshkov I.B., Mazhorova N.G., Zhemchugov P.V. et al. // INEOS Open. 2019. V. 2. P. 140. https://doi.org/10.32931/io1920a
- 28. Protsak I.S., Morozov Y.M., Dong W. et al. // Nanoscale Res. Lett. 2019. V. 14. P. 160. https://doi.org/10.1186/s11671-019-2982-2
- 29. Kloprogge J.T., Frost R.L. // Vibr. Spectrosc. 2000. V. 23. P. 119. https://doi.org/10.1016/S0924-2031 (00)00056-4
- 30. Faustova Z.V., Slizhov Y.G. // Inorg. Mater. 2017. V. 53. P. 287. https://doi.org/10.1134/S0020168517030050
- 31. Skuredina A.A., Danilov M.R., Le-Deygen I.M., Kudryashova E.V. // Moscow University Chemistry Bulletin. 2018. V. 73. P. 192. https://doi.org/10.3103/S0027131418040107
- 32. Ohta K.M., Fuji M., Takei T., Chikazawa M. // Eur. J. Pharm. Sci. 2005. V. 26. P. 87. https://doi.org/10.1016/j.ejps.2005.05.002
- 33. Nikolic V., Ilic D., Nikolic L. et al. // Savremene Tehnologije. 2014. V. 3. P. 16. https://doi.org/10.5937/savteh1402016N
- 34. Kurczewska J., Schroeder G. Cent. // Eur. J. Chem. 2011. V. 9. P. 41. https://doi.org/10.2478/s11532-010-0131-y
- 35. Wang J., Zhou Q., Song D. et al. // Sci. Technol. 2015. V. 76. P. 501. https://doi.org/10.1007/s10971-015-3800-7
- 36. Catauro M., Naviglio D., Risoluti R. et al. // J. Therm. Anal. Calorim. 2018. V. 133. P. 1085. https://doi.org/10.1007/s10973-018-7137-7