- Код статьи
- 10.31857/S0044457X24040114-1
- DOI
- 10.31857/S0044457X24040114
- Тип публикации
- Статья
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том 69 / Номер выпуска 4
- Страницы
- 557-566
- Аннотация
- Синтезированы гетерогенные нанокомпозитные катализаторы состава ZrO2@SBA-15 с содержанием оксида циркония 10 мас. % двумя методами: соконденсацией и пропиткой по влагоемкости. Катализаторы и их носители охарактеризованы с применением широкого спектра физико-химических методов, включая методы рентгенофазового и рентгенофлуоресцентного анализов, низкотемпературной адсорбции–десорбции азота, сканирующей электронной микроскопии, просвечивающей электронной микроскопии высокого разрешения, ИК-спектроскопии. В результате внедрения оксида циркония в силикатную стенку SBA-15 сохраняется мезоструктура, однако снижаются удельная поверхность и объем пор. Установлено, что при одностадийном синтезе происходит укорочение волокон частиц и их слипание. Катализаторы испытаны в процессе каталитического гидролиза-окисления гемицеллюлоз древесины осины. Определены оптимальные условия процесса для синтеза муравьиной кислоты: 150°С, 3 ч. Выход муравьиной кислоты в оптимальных условиях на катализаторе, полученном методом соконденсации, составил 28.4 мас. %.
- Ключевые слова
- мезопористый мезоструктурированный силикат SiO2 катализ окисление
- Дата публикации
- 17.09.2025
- Год выхода
- 2025
- Всего подписок
- 0
- Всего просмотров
- 10
Библиография
- 1. Kresge C.T., Leonowicz M.E., Roth J.C. et al. // Nature. 1992. V. 359. № 6397. P. 710. https://doi.org/10.1038/359710a0
- 2. Grams J., Jankowska A., Goscianska J. // Microporous Mesoporous Mater. 2023. V. 362. P. 112761. https://doi.org/10.1016/j.micromeso.2023.112761
- 3. Reina A., Carmona‐Chávez R., Pulido‐Díaz et al. // ChemCatChem. 2023. V. 15. № 11. P. e202300285. https://doi.org/10.1002/cctc.202300285
- 4. Wang J., Wang P., Wu Z. et al. // Rev. Chem. Engineer. 2023. V. 39. № 4. P. 541. https://doi.org/10.1515/revce-2021-0029
- 5. Naranov E., Golubev O., Zanaveskin K. et al. // ACS Omega. 2020. V. 5. № 12. P. 6611. https://doi.org/10.1021/acsomega.9b04373
- 6. Kokliukhin A., Nikulshina M., Sheldaisov-Meshcheryakov et al. // Catal. Lett. 2018. V. 148. P. 2869. https://doi.org/10.1007/s10562-018-2480-7
- 7. Wang W., Zhang H., Zhou F. et al. // ACS Appl. Mate. Interf. 2023. V. 15. № 28. P. 33654. https://doi.org/10.1021/acsami.3c06165
- 8. Ding Y., Peng W., Zhang et al. // J. Colloid and Interface Science. 2023. V. 630. P. 879. https://doi.org/10.1016/j.jcis.2022.10.048
- 9. Ghosh A., Chowdhury B., Bhaumik A. // Catalysts. 2023. V. 13. № 2. P. 354. https://doi.org/10.3390/catal13020354
- 10. Yang G., Wang L., Jiang H. // Reaction Chem. Engineer. 2020. V. 5. № 9. P. 1833. https://doi.org/10.1039/D0RE00160K
- 11. Tosuwan P., Chen S.-Y., Tateno et al. // Catal. Comm. 2022. V. 170. P. 106488. https://doi.org/10.1016/j.catcom.2022.106488
- 12. Mondal U., Yadav G.D. // Reaction Chem. Engineer. 2022. V. 7. № 6. P. 1391. https://doi.org/10.1039/D2RE00025C
- 13. Li L., Yan B., Li H. et al. // Renewable Energy. 2020. V. 146. P. 643. https://doi.org/https://doi.org/10.1016/j.renene.2019.07.015
- 14. Chen L., Yan W., He X. et al. // Radioanal. Nucl. Chem. 2020. V. 326. № 2. P. 1027. https://doi.org/10.1007/s10967-020-07372-6
- 15. Tamizhdurai P., Sakthinathan S., Santhana Krishnan et al. // J. Molecular Structure. 2019. V. 1176. P. 650. https://doi.org/10.1016/j.molstruc.2018.09.007
- 16. Tang Y., Chen Y., Wu Y. et al. // Microporous Mesoporous Mater. 2016. V. 224. P. 420. https://doi.org/10.1016/j.micromeso.2015.11.053
- 17. Sabbaghi A., Lam F.L.Y., Hu X. // J. Molecular Catalysis A: Chem. 2015. V. 409. P. 69. https://doi.org/10.1016/j.molcata.2015.08.005
- 18. Cheng C., Li H., Fu Q. et al. // Comput. Mater. Sci. 2018. V. 147. P. 81. https://doi.org/10.1016/j.commatsci.2018.01.051
- 19. Landau M.V., Titelman L., Vradman L. et al. // Chem. Commun. 2003. V. 5. P. 594. https://doi.org/10.1039/b211585a
- 20. Wei Y., Li Y., Tan Y. et al. // Mater. Lett. 2015. V. 141. P. 145. https://doi.org/10.1016/j.matlet.2014.11.066
- 21. Ogura M., Guillet-Nicolas R., Brouri D. et al. // Microporous Mesoporous Mater. 2016. V. 225. P. 440. https://doi.org/10.1016/j.micromeso.2016.01.026
- 22. Chen W.-K., Tseng H.-H., Wei M.-C. et al. // Int. J. Hydrogen Energy. 2014. V. 39. № 34. P. 19555. https://doi.org/10.1016/j.ijhydene.2014.08.154
- 23. Kaminski P., Ziolek M. // J. Catalysis. 2014. V. 312. P. 249. https://doi.org/10.1016/j.jcat.2014.02.005.
- 24. Gracia M.D., Balu A.M., Campelo J.M. et al. // Appl. Catal. A: General. 2009. V. 371. № 1. P. 85. https://doi.org/10.1016/j.apcata.2009.09.033
- 25. Taran O.P., Sychev V.V., Kuznetsov B.N. // Catal. Industry. 2021. V. 13. P. 289. https://doi.org/10.1134/S2070050421030119
- 26. Mu S., Liu K., Li H. et al. // Fuel Processing Technology. 2022. V. 233. P. 107292. https://doi.org/10.1016/j.fuproc.2022.107292
- 27. Sychev V.V., Malyar Y.N., Skripnikov A. et al. // Molecules. 2022. V. 27. № 24. P. 8756. https://doi.org/10.3390/molecules27248756
- 28. Zhao D., Huo Q., Feng J. et al. // J. Am. Chem. Soc. 1998. V. 120. № 24. P. 6024. https://doi.org/10.1021/ja974025i
- 29. Parfenov V., Ponomarenko I., Novikova S. // Mater. Chem. Phys. 2019. V. 232. P. 193. https://doi.org/10.1016/j.matchemphys.2019.04.087
- 30. Parfenov V., Ponomarenko I., Zharkov S., Kirik S. // Glass Phys. Chem. 2014. V. 40. P. 69. https://doi.org/10.1134/S1087659614010179
- 31. Thunyaratchatanon C., Luengnaruemitchai A., Chaisuwan N. et al. // Microporous and Mesoporous Materials. 2017. V. 253. P. 18. https://doi.org/10.1016/j.micromeso.2017.06.015
- 32. Gutiérrez O.Y., Ayala E., Puente I. et al. // Chem. Engineer. Comm. 2009. V. 196. № 10. P. 1163. https://doi.org/10.1080/00986440902831789
- 33. Rouquerol J., Rouquerol F., Llewellyn P. et al. // Adsorption by powders and porous solids: principles, methodology and applications. Academic press, 2013.
- 34. Jaroniec M., Solovyov L.A. // Langmuir. 2006. V. 22. № 16. P. 6757. https://doi.org/10.1021/la0609571
- 35. Xi J., Zhang Y., Xia Q. et al. // Appl. Catal. A: General. 2013. V. 459. P. 52. https://doi.org/10.1016/j.apcata.2013.03.047
- 36. Luo C., Wang S., Liu H. // Angewandte Chemie Int. Edition. 2007. V. 46. № 40. P. 7636. https://doi.org/10.1002/anie.200702661
- 37. Tikhov S., Mel’gunova E., Mel’gunov M. et al. // Inorg. Mater. 2017. V. 53. P. 1322. https://doi.org/10.1134/S0020168517120172
- 38. Huang Y.-Y., McCarthy T.J., Sachtler W.M. // Appl. Catal. A: General. 1996. V. 148. № 1. P. 135. https://doi.org/10.1016/S0926-860X (96)00223-2
- 39. Rissanen J.V., Lagerquist L., Eränen K. et al. // Carbohydrate Polymers. 2022. V. 293. P. 119740. https://doi.org/10.1016/j.carbpol.2022.119740
- 40. Borovkova V.S., Malyar Y.N., Sudakova I.G. et al. // Polymers. 2022. V. 14. P. 4521. https://doi.org/10.3390/polym14214521
- 41. Sairanen E., Karinen R., Lehtonen J. // Catal. Lett. 2014. V. 144. P. 1839. https://doi.org/10.1007/s10562-014-1350-1
- 42. Rackemann D.W., Doherty W.O.S. // Biofuels Bioprod. Bioref. 2011. V. 5. № 2. P. 198. https://doi.org/10.1002/bbb.267
- 43. Almhofer L., Bischof R.H., Madera M. et al. // Can. J. Chem. Engineer. 2023. V. 101. № 4. P. 2033. https://doi.org/10.1002/cjce.24593