RAS Chemistry & Material ScienceЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

Sol-gel synthesis, structure and adsorption properties of LiMgxMn(2-x)O4 (0 ≤ x ≤ 0.7) Oxides

PII
10.31857/S0044457X24040092-1
DOI
10.31857/S0044457X24040092
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 69 / Issue number 4
Pages
537-545
Abstract
Lithium manganese оxides with a spinel structure LiMgxMn(2–x)O4, doped with Mg2+ ions in the range 0 ≤ x ≤ 0.7, were obtained by sol-gel synthesis. Phase composition and morphology of obtained оxides were studied by using X-ray phase analysis and scanning electron microscopy. It is shown, that in the studied range 0 ≤ x ≤ 0.7 Mg-doped lithium manganese оxides saved the structure of the original cubic spinel LiMn2O4, while an increase in parameter a was observed from 8.175 to 8.309 Å and average crystallite size practically unchanged (30–36 nm). Samples of the initial LiMn2O4 and Mg-doped spinels were represented by prismatic particles of submicron (0.1–0.2 µm) and micron (1.0–3.0 µm) sizes, respectively. The effect of the adsorbent dose (0.05–0.3 g/l) and pH (3.0–13.0) of the solution on the adsorption efficiency was studied. The adsorption isotherms of the LiMg0.3Mn1.7O4 samples were described by the Langmuir monomolecular adsorption equation. An increase in the temperature of the model solution from 25 to 45°C was accompanied by an increase in the maximum adsorption of the LiMg0.3Mn1.7O4 samples from 10.50 to 10.98 mmol/g, which indicates the endothermic nature of the adsorption process. The kinetics of adsorption was well described by a pseudo-second order equation, which indicates the occurrence of chemical interaction during the adsorption process.
Keywords
LiMn2O4 Mg-допированная шпинель адсорбция ионов Li+
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
12

References

  1. 1. Liu D.-F., Sun Sh.-Y., Yu J.-G. // Chem. Eng. J. 2019. V. 377. P. 119825. https://doi.org/10.1016/j.cej.2018.08.211
  2. 2. Ryu J.Ch., Shin J., Lim Ch. et al. // Hydrometallurgy. 2022. V. 209. P. 105837. https://doi.org/10.1016/j.hydromet.2022.105837
  3. 3. Zhang G., Zhang J., Zeng J. et al. // Coll. Surf. A. 2021. V. 629. P. 127465. https://doi.org/10.1016/j.colsurfa.2021.127465
  4. 4. Tan L., Li Zh., Tong Zh. et al. // Ceram. Int. 2024. V. 50. № 4. P. 5877. https://doi.org/10.1016/j.ceramint.2023.11.386
  5. 5. Tomon Ch., Sarawutanukul S., Phattharasupakun N. et al. // Commun. Chem. 2022. V. 5. P. 54. https://doi.org/10.1038/s42004-022-00670-y
  6. 6. Qiu Y., Peng X., Zhou L. et al. // Batteries. 2023. V. 9. № 2. P. 123. https://doi.org/10.3390/batteries9020123
  7. 7. Weng D., Duan H., Hou Y. et al. // Prog. Nat. Sci.: Mater. Int. 2020. V. 30. № 2. P. 139. https://doi.org/10.1016/j.pnsc.2020.01.017
  8. 8. Cheng M., Yao Ch., Su Y. et al. // Chemosphere. 2021. V. 279. P. 130487. https://doi.org/10.1016/j.chemosphere.2021.130487
  9. 9. Gao Y., Wang Sh., Gao F. et al. // Microporous Mesoporous Mater. 2023. V. 351. P. 112492. https://doi.org/10.1016/j.micromeso.2023.112492
  10. 10. Gao J.-M., Du Z., Zhao Q. et al. // J. Mater. Res. Technol. 2021. V. 13. P. 228. https://doi.org/10.1016/j.jmrt.2021.04.073
  11. 11. Liu Zh., Chen K., Ding J. et al. // Hydrometallurgy. 2023. V. 219. P. 106078. https://doi.org/10.1016/j.hydromet.2023.106078
  12. 12. Siekierka A. // Sep. Purif. Technol. 2020. V. 236. P. 116234. https://doi.org/10.1016/j.seppur.2019.116234
  13. 13. Tian G., Gao J., Wang M. et al. // Electrochim. Acta. 2024. V. 475. P. 143361. https://doi.org/10.1016/j.electacta.2023.143361
  14. 14. Singh G., Gupta S.L., Prasad R. et al. // J. Phys. Chem. Solids. 2009. V. 70. № 8. P. 1200. https://doi.org/10.1016/j.jpcs.2009.07.001
  15. 15. Llusco A., Grageda M., Ushak S. // Nanomaterials. 2020. V. 10. № 7. P. 1409. https://doi.org/10.3390%2Fnano10071409
  16. 16. Ross N., Willenberg Sh., Juqu Th. et al. // J. Nanotechnol. 2024. V. 2024. P. 7020995. https://doi.org/10.1155/2024/7020995
  17. 17. Zhan H., Qiao Y., Qian Zh. et al. // J. Ind. Eng. Chem. 2022. V. 114. P. 142. https://doi.org/10.1016/j.jiec.2022.07.003
  18. 18. Park S. H., Yan Y.-Zh., Kim J. et al. // Hydrometallurgy. 2022. V. 208. P. 105812. https://doi.org/10.1016/j.hydromet.2021.105812
  19. 19. Bao L.-R., Zhang J.-Z., Tang W.-P. et al. // Desalination. 2023. V. 546. P. 116196. https://doi.org/10.1016/j.desal.2022.116196
  20. 20. Sun Y., Wang Q., Wang Y. et al. // Sep. Purif. Technol. 2021. V. 256. P. 117807. https://doi.org/10.1016//j.seppur.2020.117807
  21. 21. Karshyga Z., Yersaiynova A., Yessengaziyev A. et al. // Materials. 2023. V. 16. № 24. P. 7548. https://doi.org/10.3390%2Fma16247548
  22. 22. Иванец А.И., Печенка Д.В., Прозорович В.Г. и др. // Докл. НАН Беларуси. 2023. Т. 67. № 1. С. 27. https://doi.org/10.29235/1561-8323-2023-67-1-27-37
  23. 23. Бузанов Г.А., Нипан Г.Д., Жижин К.Ю. и др. // Журн. неорган. химии. 2017. Т. 62. № 5. С. 551.
  24. 24. Ivanets A., Prozorovich V., Kouznetsova T. et al. // J. Hazard. Mater. 2021. V. 411. P. 124902. https://doi.org/10.1016/j.jhazmat.2020.1249023
  25. 25. Tran H.N., You Sh.-J., Hosseini-Bandegharaei A. et al. // Water Res. 2017. V. 120. P. 88. https://doi.org/10.1016/j.watres.2017.04.014
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library