- Код статьи
- 10.31857/S0044457X24030075-1
- DOI
- 10.31857/S0044457X24030075
- Тип публикации
- Обзор
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том 69 / Номер выпуска 3
- Страницы
- 327-334
- Аннотация
- Обзор посвящен получению 2D-графеновых наноструктур (малослойного графена) по разработанной авторами методике карбонизации биополимеров в условиях процесса самораспространяющегося высокотемпературного синтеза (СВС). В работе выполнен анализ и обобщение полученных экспериментальных и некоторых теоретических результатов, на основе которых предложена феноменологическая модель синтеза 2D-графеновых структур в условиях СВС. Основное внимание сфокусировано на результатах, полученных за последние 10 лет. Рассмотрены перспективы проводимых исследований по карбонизации биополимеров. Особое внимание уделено областям исследований, которые, как ожидается, будут наиболее интересными для практического применения малослойного графена в ближайшем будущем.
- Ключевые слова
- графеновые наноструктуры малослойный графен биополимеры лигнин кора
- Дата публикации
- 17.09.2025
- Год выхода
- 2025
- Всего подписок
- 0
- Всего просмотров
- 10
Библиография
- 1. Hummers W.S., Offeman R.E. // J. Am. Chem. Soc. 1958. V. 80. P. 1339. https://doi.org/10.1021/ja01539a017
- 2. Balandin A.A., Ghosh S., Bao S. et al. // Nano Lett. 2008. V. 8. № 3. P. 902. https://doi.org/10.1021/nl0731872
- 3. Lee C., Wei X., Kysar J.W. et al. // Science. 2008. V. 321. № 5887. P. 385. https://doi.org/10.1126/science.1157996
- 4. Zhu Y., Murali S., Cai W. et al. // Adv. Mater. 2010. V. 22. № 35. P. 3906. https://doi.org/10.1002/adma.201001068
- 5. ISO/TR 19733:2019 Nanotechnologies — Matrix of properties and measurement techniques for graphene and related two-dimensional (2D) materials, https://www.iso.org/standard/66188.html
- 6. Eletskii A.V. // Physchem. 2022. V. 2. P. 18. https://doi.org/10.3390/physchem2010003
- 7. Таратайко А.В., Мамонтов Г.В. // Вестник Томск. гос. ун-та. Сер. Химия. 2023. № 30. С. 67. https://doi.org/10.17223/24135542/30/6
- 8. Gu X., Zhao Y., Sun K. et al. // Ultrason. Sonochem. 2019. V. 58. P. 104630. https://doi.org/10.1016/j.ultsonch.2019.104630
- 9. Novoselov K.S., Geim A.K., Morozov S.V. et al. // Science. 2004. V. 306. № 5696. P. 666. https://doi.org/10.1126/science.1102896
- 10. Huang Y., Pan Y.H., Yang R. et al. // Nat. Commun. 2020. V. 11. № 1. P. 2453. https://doi.org/10.1038/s41467-020-16266-w
- 11. Deng B., Liu Z., Peng H. // Adv. Mater. 2019. V. 31. № 9. P. 1800996. https://doi.org/10.1016/j.carbon.2015.03.0
- 12. Давыдов В.Ю., Усачев Д.Ю., Лебедев С.П. и др. // Физика и техника полупроводников. 2017. Т. 51. № 8. С. 1116.
- 13. Лебедев С.П., Елисеев И.А., Давыдов В.Ю. и др. // Письма в ЖТФ. 2017. Т. 43. № 18. С. 64.
- 14. Коваленко С.Л., Павлова Т.В., Андрюшечкин Б.В. и др. // Письма в ЖЭТФ. 2017. Т. 105. № 3. С. 170.
- 15. Prekodravac J., Marković Z., Jovanović S. et al. // Synth. Met. 2015. V. 209. P. 461. https://doi.org/10.1016/j.synthmet.2015.08.015
- 16. Kumar A., Sharma K., Dixit A.R. // Carbon Lett. 2021. V. 31. № 2. P. 149. https://doi.org/10.1007/s42823-020-00161-x
- 17. Ширинкина И.Г., Бродова И.Г., Распосиенко Д.Ю. и др. // Физика металлов и металловедение. 2020. Т. 121. № 12. С. 1297.
- 18. Симоненко Е.П., Симоненко Н.П., Колесников А.Ф. и др. // Журн. неорган. химии. 2022. Т. 67. № 12. С. 1839.
- 19. Горшков Н.В., Яковлева Е.В., Краснов В.В. и др. // Журн. прикл. химии. 2021. Т. 94. № 3. C. 388.
- 20. Шаповалов С.С., Попова А.С., Иони Ю.В. // Журн. неорган. химии. 2021. Т. 66. № 11. С. 1519.
- 21. Даниленко В.В. // Физика тв. тела. 2004. Т. 46. № 4. С. 581.
- 22. Долматов В.Ю. // Успехи химии. 2007. Т. 76. № 4. С. 375.
- 23. Рогачев А.С., Мукасьян А.С. Горение для синтеза материалов: введение в структурную макрокинетику. М.: Физматлит, 2012. 400 с.
- 24. Азатян В.В. // Кинетика и катализ. 2020. Т. 61. № 3. С. 291.
- 25. Miao Q., Wang L., Liu Z. et al. // Sci. Rep. 2016. V. 6. P. 21832. https://doi.org/10.1038/srep21832
- 26. Miao Q., Wang L., Liu Z. et al. // Sci. Rep. 2017. V. 7. P. 5877. https://doi.org/10.1038/s41598-017-06224-w
- 27. Dabrowska A., Huczko A. // Phys. Status Solidi B. 2018. V. 255. P. 1800194. https://doi.org/10.1002/pssb.201800194
- 28. Huczko A., Łab˛ed´z O., Dabrowska A. et al. // Phys. Status Solidi B. 2015. V. 252. P. 2412. https://doi.org/10.1002/pssb.201552233
- 29. Wang L., Wei B., Dong P. et al. // Mater. Des. 2016. V. 92. P. 462. https://doi.org/10.1016/j.matdes.2015.12.075
- 30. Возняковский А.П., Неверовская А.Ю., Возняковский А.А. и др. // Экологическая химия. Т. 29. № 4. C. 190.
- 31. Voznyakovskii A.P., Vozniakovskii A.A., Kidalov S.V. // Fullerenes, Nanotubes Carbon Nanostruct. 2022. V. 30. № 1. P. 59. https://doi.org/10.1080/1536383x.2021.1993831
- 32. Voznyakovskii A.P., Vozniakovskii A.A., Kidalov S.V. // Nanomaterials. 2022. V. 12. № 4. P. 657. https://doi.org/10.3390/nano12040657
- 33. Возняковский А.А., Возняковский А.П., Кидалов С.В. и др. // Журн. структур. химии. 2020. Т. 61. № 5. С. 869.
- 34. Bhatt M.D., Kim H., Kim G. // RSC Adv. 2022. V. 12. № 33. P. 21520. https://doi.org/10.1039/d2ra01436j
- 35. Malekpour H., Ramnani P., Srinivasan S. et al. // Nanoscale. 2016. V. 8. № 30. P. 14608. https://doi.org/10.1039/c6nr03470e
- 36. Haghighi M., Khodadadi A., Golestanian H. et al. // Polym. Polym. Compos. 2021. V. 29. № 6. P. 629. https://doi.org/10.1177/0967391120929075
- 37. Voznyakovskii A.P., Neverovskaya A.Yu., Vozniakovskii A.A. et al. // Nanomaterials. 2022. V. 12. № 5. P. 883. https://doi.org/10.3390/nano12050883
- 38. Wang X., Yu S., Jin J. et al. // Sci. Bull. 2016. V. 61. № 20. P. 1583. https://doi.org/10.1007/s11434-016-1168-x
- 39. Bytesnikova Z., Adam V., Richtera L. // Food Control. 2021. V. 121. P. 107611. https://doi.org/10.1016/j.foodcont.2020.107611
- 40. Vozniakovskii A.P., Kidalov S.V., Vozniakovskii A.A. et al. // Fullerenes, Nanotubes, Carbon Nanostruct. 2020. V. 28. № 3. P. 238. https://doi.org/10.1080/1536383x.2019.1686627
- 41. Возняковский А.П., Карманов А.П., Кочева Л.С. и др. // Журн. тех. физики. 2022. Т. 92. № 7. С. 805.
- 42. Чесноков В.В., Лисицын А.С., Соболев В.И. и др. // Кинетика и катализ. 2021. Т. 62. № 4. С. 472.
- 43. Ye D., Huang R., Zhu H. et al. // Org. Chem. Front. 2019. V. 6. № 1. P. 62. https://doi.org/10.1039/c8qo00941d
- 44. Возняковский А.П., Неверовская А.Ю., Калинин А.В. и др. // Экологическая химия. 2020. Т. 90. № 10. С. 1627.
- 45. Lakra R., Kumar R., Sahoo P.K. et al. // Inorg. Chem. Commun. 2021. V. 133. P. 108929. https://doi.org/10.1016/j.inoche.2021.108929
- 46. Мианкушки Х.Н., Седги А., Багшахи С. // Электрохимия. 2019. T. 55. № 5. C. 599. https://doi.org/10.1134/s0424857019050098
- 47. Vozniakovskii A.A., Smirnova E.A., Apraksin R.V. et al. // Nanomaterials. 2023. V. 13. P. 2368. https://doi.org/10.3390/nano13162368
- 48. Бернацкий Д.П., Павлов В.Г. // Письма в ЖТФ. 2015. Т. 41. № 20. С. 44.
- 49. Lepetit B. // J. Appl. Phys. 2021. V. 129. № 14. P. 144302. https://doi.org/10.1063/5.0047771
- 50. Voznyakovskii A.P., Fursei G., Vozniakovskii A. et al. // Fullerenes, Nanotubes, Carbon Nanostruct. 2022. V. 30. № 1. P. 53. https://doi.org/10.1080/1536383x.2021.1995366
- 51. Ar G., Dhas A.M., Pawar R.B. et al. // Propellants, Explos., Pyrotech. 2022. V. 47. № 11. P. e202200098. https://doi.org/10.1002/prep.202200098
- 52. Илюшин М.А., Ведерников Ю.Н., Возняковский А.П. и др. // Российский хим. журнал. 2021. T. 65. № 3. С. 19. https://doi.org/10.6060/rcj.2021653.2
- 53. Ilyushin M.A., Voznyakovskii A.P., Shugalei I. et al. // Nanomanufacturing. 2023. V. 3. № 2. P. 167. https://doi.org/10.3390/nanomanufacturing3020011