RAS Chemistry & Material ScienceЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

Elastic Energy Relaxation During the Chemical Reaction with Single-Crystalline Silicon in the Process of Coordinated Substitution of Atoms

PII
10.31857/S0044457X24030065-1
DOI
10.31857/S0044457X24030065
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 69 / Issue number 3
Pages
319-326
Abstract
This study focuses on providing a detailed microscopic description of the chemical transformation of a silicon crystal into a silicon carbide crystal through reaction with carbon monoxide gas on the (111) surface. To achieve this, we utilized the density functional theory in the spin-polarized PBE approximation. By employing the NEB method, we successfully established all intermediate (adsorption) states as well as a single transition state. Our results rэВeal that the transition state takes the form of a Si-O-C triangle, with bond lengths measuring 1.94 Å, 1.24 Å, and 2.29 Å. Additionally, we calculated the energy profile of this chemical transformation. Interestingly, we discovered that the formation of broken bonds generates both electric and magnetic fields during the transformation process. Furthermore, our findings indicate that the relaxation of elastic energy plays a significant role in facilitating the epitaxial growth of the crystal by weakening the bonds of necessary atoms. Consequently, we conclude that the (111) surface is highly suitable for silicon carbide growth via this method, particularly for semiconductor applications.
Keywords
химическая эпитаксия карбид кремния метод функционала плотности метод упругих лент широкозонные полупроводники химическая конверсия
Date of publication
15.03.2024
Year of publication
2024
Number of purchasers
0
Views
44

References

  1. 1. Ferro G. // Crit. Rev. Solid State Mater. Sci. 2015. V. 40. № 1. P. 56. https://doi.org/10.1080/10408436.2014.940440
  2. 2. Severino A., Locke C., Anzalone R. et al. // ECS Trans. 2011. V. 35. № 6. P. 99. https://doi.org/10.1149/1.3570851
  3. 3. Kukushkin S.A., Osipov A.V. // J. Appl. Phys. 2013. V. 113. № 2. https://doi.org/10.1063/1.4773343
  4. 4. Kukushkin S.A., Osipov A.V. // Russ. J. Gen. Chem. 2022. V. 92. № 4. P. 584. https://doi.org/10.1134/S1070363222040028
  5. 5. Kukushkin S.A., Osipov A.V. // Phys. Solid State. 2016. V. 58. № 4. P. 747. https://doi.org/10.1134/S1063783416040120
  6. 6. Kukushkin S.A., Osipov A.V., Feoktistov N.A. // Phys. Solid State. 2019. V. 61. № 3. P. 456. https://doi.org/10.1134/S1063783419030193
  7. 7. Kukushkin S.A., Osipov A.V. // Materials (Basel). 2022. V. 15. № 13. P. 4653. https://doi.org/10.3390/ma15134653
  8. 8. Kukushkin S.A., Osipov A.V., Soshnikov I.P. // Rev. Adv. Mater. Sci. 2017. V. 52. № 1–2. P. 29.
  9. 9. Koryakin A.A., Kukushkin S.A., Osipov A.V. et al. // Materials (Basel). 2022. V. 15. № 18. P. 6202. https://doi.org/10.3390/ma15186202
  10. 10. Kukushkin S.A., Osipov A.V. // Mech. Solids. 2013. V. 48. № 2. P. 216. https://doi.org/10.3103/S0025654413020143
  11. 11. Kukushkin S.A., Osipov A.V., Telyatnik R.S. // Phys. Solid State. 2016. V. 58. № 5. P. 971. https://doi.org/10.1134/S1063783416050140
  12. 12. Ермакова Е.Н., Максимовский Е.А., Юшина И.В. и др. // Журн. неорган. химии. 2023. Т. 68. № 2. С. 256. https://doi.org/10.31857/S0044457X22601547
  13. 13. Воронцов Е.С. // Успехи химии. 1965. Т. 34. № 11. С. 2020.
  14. 14. Dovesi R., Civalleri B., Roetti C. et al. Ab Initio Quantum Simulation in Solid State Chemistry in Rev. Comput. // ChemInform. V. 36. № 48. P. 1. https://doi.org/10.1002/0471720895.ch1
  15. 15. Tuan Hung N., Nugraha A.R.T., Saito R. Quantum ESPRESSO Course for Solid State Physics. N.Y.: Jenny Stanford Publishing, 2022. 372 p. https://doi.org/10.1201/9781003290964
  16. 16. Lee J.G. Computational Materials Science: An Introduction, Boca Raton: CRC Press, 2016. 376 p. https://doi.org/10.1201/9781315368429
  17. 17. Сангвал К. Травление кристаллов: Теория. Эксперимент. Применение: Пер. с англ. М.: Мир, 1990. 492 с.
  18. 18. Kukushkin S., Osipov A., Redkov A. // Adv. Struct. Mater. 2022. V. 164. P. 335. https://doi.org/10.1007/978-3-030-93076-9_18
  19. 19. Kukushkin S.A., Osipov A.V. // J. Phys. D: Appl. Phys. 2014. V. 47. № 31. https://doi.org/10.1088/0022-3727/47/31/313001
  20. 20. Kukushkin S.A., Osipov A.V. // Materials (Basel). 2021. V. 14. № 1. P. 78. https://doi.org/10.3390/ma14010078
  21. 21. Henkelman G., Uberuaga B.P., Jónsson H. // J. Chem. Phys. 2000. V. 113. № 22. P. 9901. https://doi.org/10.1063/1.1329672
  22. 22. Tolédano P., Dmitriev V. Reconstructive Phase Transitions, World Scientific, 1996. 416 p. https://doi.org/10.1142/2848
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library