ОХНМЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

2D-нанокристаллы оксидов цинка и марганца(II, III) с морфологией перфорированных нанолистов, полученные по реакции гидролиза Mn(OAc)2 и Zn(OAc)2 газообразным аммиаком на поверхности их водных растворов

Код статьи
10.31857/S0044457X24030059-1
DOI
10.31857/S0044457X24030059
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 69 / Номер выпуска 3
Страницы
311-318
Аннотация
Впервые показано, что 2D-нанокристаллы ZnO со структурой вюрцита и Mn3O4 со структурой гаусманита и морфологией перфорированных нанолистов могут быть получены на основе соединений, которые образуются в результате реакций, протекающих на поверхности водных растворов ацетатов соответствующих металлов при обработке ее газообразным NH3. Нанесение указанных слоев на поверхность кремния делает его гидрофобным в случае ZnO и супергидрофильным в случае Mn3O4. С помощью предложенной методики синтеза возможно последовательное и многократное нанесение данных соединений на поверхность подложки. Показано, что подобные “мультислои” могут проявлять новые свойства.
Ключевые слова
гаусманит основной ацетат цинка вюрцит перфорированные нанолисты послойный синтез
Дата публикации
17.09.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
11

Библиография

  1. 1. Osada M., Sasaki T. // Adv. Mater. 2012. V. 24. № 2. P. 210. https://doi.org/10.1002/adma.201103241
  2. 2. Yapryntsev A.D., Baranchikov A.E., Ivanov V.K. // Russ. Chem. Rev. 2020. V. 89. № 6. P. 629. https://doi.org/10.1070/rcr4920
  3. 3. Aslanov L.A., Dunaev S.F. // Russ. Chem. Rev. 2018. V. 87. № 9. P. https://doi.org/882. 10.1070/rcr4806
  4. 4. Khan K., Tareen A.K., Aslam M. et al. // Nanoscale. 2019. V. 11. № 45. P. 21622. https://doi.org/10.1039/c9nr05919a
  5. 5. Tsukanov A.A., Turk B., Vasiljeva O. et al. // Nanomaterials. 2022. V. 12. № 4. P. 650. https://doi.org/10.3390/nano12040650
  6. 6. Mei L., Zhu S., Yin W. et al. // Theranostics. 2020. V. 10. № 2. P. 757. https://doi.org/10.7150/thno.39701
  7. 7. Wang L., Takada K., Kajiyama A. et al. // Chem. Mater. 2003. V. 15. № 23. P. 4508. https://doi.org/10.1021/cm0217809
  8. 8. Kaneva M.V., Tolstoy V.P. // Russ. J. Gen. Chem. 2022. V. 92. № 11. P. 2339. https://doi.org/10.1134/S1070363222110184
  9. 9. Wu G., Wu X., Zhu X. et al. // ACS Nano. 2022. V. 16. № 7. P. 10130. https://doi.org/10.1021/acsnano.2c02841
  10. 10. Zhou M., Lou X.W., Xie Y. // Nano Today. 2013. V. 8. № 6. P. 598. https://doi.org/10.1016/j.nantod.2013.12.002
  11. 11. Haque F., Daeneke T., Kalantar-zadeh K. et al. // Nano-Micro Lett. 2018. V. 10. № 2. P. 23. https://doi.org/10.1007/s40820-017-0176-y
  12. 12. Tolstoy V.P., Gulina L.B., Golubeva A.A. et al. // J. Solid State Electrochem. 2019. V. 23. № 2. P. 573. https://doi.org/10.1007/s10008-018-04165-6
  13. 13. Korotcenkov G., Tolstoy V.P. // Nanomaterials. 2023. V. 13. № 2. P. 237. https://doi.org/10.3390/nano13020237
  14. 14. Tolstoy V.P., Gulina L.B., Meleshko A.A. // Russ. Chem. Rev. 2023. V. 92. № 3. P. RCR5071. https://doi.org/10.57634/RCR5071
  15. 15. Zhang Q., Chen D., Song Q. et al. // Surf. Interfaces. 2021. V. 23. P. 100979. https://doi.org/10.1016/j.surfin.2021.100979
  16. 16. Peng L., Fang Z., Zhu Y. et al. // Adv. Energy Mater. 2018. V. 8. № 9. P. 1702179. https://doi.org/10.1002/aenm.201702179
  17. 17. Peng L., Xiong P., Ma L. et al. // Nat. Commun. 2017. V. 8. P. 15139. https://doi.org/10.1038/ncomms15139
  18. 18. Gicha B.B., Tufa L.T., Kang S. et al. // Nanomaterials. 2021. V. 11. № 6. P. 1388. https://doi.org/10.3390/nano11061388
  19. 19. Nazarian-Samani M., Haghighat-Shishavan S., Nazarian-Samani M. et al. // Prog. Mater. Sci. 2021. V. 116. P. 100716. https://doi.org/10.1016/j.pmatsci.2020.100716
  20. 20. Napi M.L.M., Sultan S.M., Ismail R. et al. // Materials. 2019. V. 12. № 18. P. 2985. https://doi.org/10.3390/ma12182985
  21. 21. Abinaya K., Sharvanti P., Rajeswari Yogamalar N. // Nanosystems: Phys. Chem. Math. 2023. V. 14. № 4. P. 454. https://doi.org/10.17586/2220-8054-2023-14-4-454-466
  22. 22. Afineevskii A.V., Prozorov D.A., Smirnov D.V. et al. // Russ. J. Gen. Chem. 2023. V. 93. № 6. P. 1560. https://doi.org/10.1134/S1070363223060282
  23. 23. Nagornov I.A., Mokrushin A.S., Simonenko E.P. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 4. P. 539. https://doi.org/10.1134/S0036023622040143
  24. 24. Julien C.M., Mauger A. // Nanomaterials. 2017. V. 7. № 11. P. 396. https://doi.org/10.3390/nano7110396
  25. 25. Makvandi P., Wang C., Zare E.N. et al. // Adv. Funct. Mater. 2020. V. 30. № 22. P. 1910021. https://doi.org/10.1002/adfm.201910021
  26. 26. Gulina L.B., Tolstoy V.P., Solovev A.A. et al. // Prog. Nat. Sci. 2020. V. 30. № 3. P. 279. https://doi.org/10.1016/j.pnsc.2020.05.001
  27. 27. Ishioka T., Shibata Y., Takahashi M. et al. // Spectrochim. Acta, Part A. 1998. V. 54. № 12. P. 1827. https://doi.org/10.1016/S1386-1425 (98)00063-8
  28. 28. Dubal D.P., Dhawale D.S., Salunkhe R.R. et al. // J. Electrochem. Soc. 2010. V. 157. № 7. P. A812. https://doi.org/10.1149/1.3428675
  29. 29. Poul L., Jouini N., Fiévet F. // Chem. Mater. 2000. V. 12. № 10. P. 3123. https://doi.org/10.1021/cm991179j
  30. 30. Sabine T.M., Hogg S. // Acta Crystallogr., Sect. B. 1969. V. 25. № 11. P. 2254. https://doi.org/10.1107/S0567740869005528
  31. 31. Aminoff G. // Z. Kristallogr. 1926. V. 64. № 63. P. 222.
  32. 32. Wyckoff R.W.G. Crystal Structures. N.Y.: Interscience Publishers, 1963. 134 p.
  33. 33. Strykanova V.V., Gulina L.B., Tolstoy V.P. et al. // ACS Omega. 2020. V. 5. № 25. P. 15728. https://doi.org/10.1021/acsomega.0c02258
  34. 34. Su B., Li M., Shi Z. et al. // Langmuir. 2009. V. 25. № 6. P. 3640. https://doi.org/10.1021/la803948m
  35. 35. Gulina L.B., Gurenko V.E., Tolstoy V.P. et al. // Langmuir. 2019. V. 35. № 47. P. 14983. https://doi.org/10.1021/acs.langmuir.9b02338
  36. 36. Masuda Y., Ohji T., Kato K. // ACS Appl. Mater. Interfaces. 2012. V. 4. № 3. P. 1666. https://doi.org/10.1021/am201811x
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека