- PII
- 10.31857/S0044457X24010145-1
- DOI
- 10.31857/S0044457X24010145
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 69 / Issue number 1
- Pages
- 120-130
- Abstract
- This paper is devoted to the study of LaInO3 based co-doped materials. Solid solutions in which lanthanum is substituted for strontium have sufficiently high conductivity values, but a low level of oxygen deficiency is realized. Mg2+ and Ca2+ ions were chosen as co-dopants for the B sublattice. Both series of the investigated La0.9Sr0.1In1-xCaxO2.95–0.5x and La0.9Sr0.1In1-yMgyO2.95-0.5y solid solutions crystallize in orthorhombic symmetry with sp. gr. Pnma. The ionic conductivity in a dry atmosphere is determined by the oxygen ions transport. Oxygen-ion transfer in solid solutions is ~30–40% at high temperatures (T > 700°C) and increases to >80% as the temperature decreases to 400–300°C. The substitution Ca2+ with In3+ increases the electrical conductivity of the oxygen ions; the highest values are achieved for the compositions La0.9Sr0.1In0.95Ca0.05O2.925 and La0.9Sr0.1In0.9Ca0.1O2.9. The introduction of Mg2+ co-dopant at the In3+ positions leads to a decrease in ionic conductivity compared to La0.9Sr0.1InO2.95. The effects of changing oxygen mobility with changing geometric factors (cell volume, critical radius) are discussed.
- Keywords
- перовскит электролиты парциальная проводимость кислород-ионный транспорт
- Date of publication
- 15.01.2024
- Year of publication
- 2024
- Number of purchasers
- 0
- Views
- 47
References
- 1. Buonomano A., Barone G., Forzano C. // Energy Rep. 2022. V. 8. P. 4844. https://doi.org/10.1016/j.egyr.2022.03.171
- 2. Kumar S.S., Lim H. // Energy Rep. 2022. V. 8. P. 13793. https://doi.org/10.1016/j.egyr.2022.10.127
- 3. Scovell M.D. // Int. J. Hydrogen Energy. 2022. V. 47. P. 10441. https://doi.org/10.1016/j.ijhydene.2022.01.099
- 4. Corigliano O., Pagnotta L., Fragiacomo P. // Sustainability. 2022. V. 14. P. 15276. https://doi.org/10.3390/su142215276
- 5. Klyndyuk A.I., Zhuravleva Ya.Yu. // Russ. J. Inorg. Chem. 2022. V. 67. P. 2084. https://doi.org/10.1134/S0036023622601404
- 6. Pişkin F. // Russ. J. Inorg. Chem. 2022. V. 67. P. 1239. https://doi.org/10.1134/S0036023622080216
- 7. Filonova E., Medvedev D. // Nanomaterials. 2022. V. 12. P. 1991. https://doi.org/10.3390/nano12121991
- 8. Chen Z., Jiang Q., Cheng F. et al. // J. Mater. Chem. A. 2019. V. 7. P. 6099. https://doi.org/10.1039/C8TA11957K
- 9. Stroeva A.Y., Gorelov V.P., Balakireva V.B. // Russ. J. Electrochem. 2010. V. 46. P. 552. https://doi.org/ 10.1134/S1023193510070116
- 10. Kuz’min A.V., Stroeva A.Yu., Gorelov V.P. // Russ. J. Electrochem. V. 54. P. 43. https://doi.org/10.1134/S1023193518010056
- 11. Egorova A.V., Belova K.G., Animitsa I.E. // Int. J. Hydrogen Energy. 2023. V. 48. P. 22685. https://doi.org/10.1016/j.ijhydene.2023.03.263
- 12. Gambino M., Tommaso S.D., Giannici F. et al. // J. Chem. Phys. 2017. V. 147. P. 144702. https://doi.org/ 10.1063/1.4993705
- 13. Kim H.-L., Kim S., Lee K.-H. et al. // J. Power Sources. 2014. V. 267. P. 723. https://doi.org/https://doi.org/ 10.1016/j.jpowsour.2014.06.006
- 14. Dhanasekaran P., Gupta N.M. // Mater. Res. Bull. 2012. V. 47. P. 1217. https://doi.org/10.1016/j.materresbull.2012.01.031
- 15. Sood K., Singh K., Pandey O.P. // Physica B. 2015. V. 456. P. 250. https://doi.org/10.1016/j.physb. 2014.08.036
- 16. Sood K., Singh K., Basu S. et al. // Ionics. 2015. V. 21. P. 2839. https://doi.org/10.1007/s11581-015-1461-8
- 17. He H., Huang X., Chen L. // Solid State Ionics. 2000. V. 130. P. 183. https://doi.org/10.1016/S0167-2738 (00)00666-4
- 18. He H., Huang X., Chen L. // Electrochim. Acta. 2001. V. 46. P. 2871. https://doi.org/10.1016/S0013-4686 (01)00508-4
- 19. Bakiz B., Guinneton F., Arab M. et al. // Adv. Mater. Sci. Eng. 2010. V. 2010. P. 360597. https://doi.org/ 10.1155/2010/360597
- 20. Shannon R.D. // Acta Crystallogr., Sect. A: Found. Crystallogr. 1976. V. 32. P. 751. https://doi.org/10.1107/S0567739476001551
- 21. Nishiyama S., Kimura M., Hattori T. // Key Eng. Mater. 2001. V. 216. P. 65. https://doi.org/10.4028/www.scientific.net/KEM.216.65
- 22. Smyth D.M. // Solid State Ionics. 2000. V. 129. P. 5. https://doi.org/10.1016/S0167-2738 (99)00312-4
- 23. Lany S., Zunger A. // Phys. Rev. B. 2009. V. 80. P. 085202. https://doi.org/10.1103/PhysRevB.80.085202
- 24. Dong Ya., Huang Yi., Ding D. et al. // Acta Mater. 2021. V. 203. P. 116487. https://doi.org/10.1016/j.actamat.2020.116487
- 25. Kilner J.A., Brook R.J. // Solid State Ionics. 1982. V. 6. P. 237. https://doi.org/10.1016/0167-2738 (82)90045-5
- 26. Sammells A.F., Cook R.L., White J.H. et al. // Solid State Ionics. 1992. V. 52. P. 111.
- 27. Tantardini Chr., Oganov A.R. // Nature Commun. 2021. V. 12. P. 2087. https://doi.org/10.1038/s41467-021-22429-0
- 28. Воронов В.Н. Ионная подвижность и свойства соединений ABX3 типа перовскита. Красноярск, 2006. 64 с.