RAS Chemistry & Material ScienceЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

The electrical properties of codoping LaInO3 perovskite

PII
10.31857/S0044457X24010145-1
DOI
10.31857/S0044457X24010145
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 69 / Issue number 1
Pages
120-130
Abstract
This paper is devoted to the study of LaInO3 based co-doped materials. Solid solutions in which lanthanum is substituted for strontium have sufficiently high conductivity values, but a low level of oxygen deficiency is realized. Mg2+ and Ca2+ ions were chosen as co-dopants for the B sublattice. Both series of the investigated La0.9Sr0.1In1-xCaxO2.95–0.5x and La0.9Sr0.1In1-yMgyO2.95-0.5y solid solutions crystallize in orthorhombic symmetry with sp. gr. Pnma. The ionic conductivity in a dry atmosphere is determined by the oxygen ions transport. Oxygen-ion transfer in solid solutions is ~30–40% at high temperatures (T > 700°C) and increases to >80% as the temperature decreases to 400–300°C. The substitution Ca2+ with In3+ increases the electrical conductivity of the oxygen ions; the highest values are achieved for the compositions La0.9Sr0.1In0.95Ca0.05O2.925 and La0.9Sr0.1In0.9Ca0.1O2.9. The introduction of Mg2+ co-dopant at the In3+ positions leads to a decrease in ionic conductivity compared to La0.9Sr0.1InO2.95. The effects of changing oxygen mobility with changing geometric factors (cell volume, critical radius) are discussed.
Keywords
перовскит электролиты парциальная проводимость кислород-ионный транспорт
Date of publication
15.01.2024
Year of publication
2024
Number of purchasers
0
Views
47

References

  1. 1. Buonomano A., Barone G., Forzano C. // Energy Rep. 2022. V. 8. P. 4844. https://doi.org/10.1016/j.egyr.2022.03.171
  2. 2. Kumar S.S., Lim H. // Energy Rep. 2022. V. 8. P. 13793. https://doi.org/10.1016/j.egyr.2022.10.127
  3. 3. Scovell M.D. // Int. J. Hydrogen Energy. 2022. V. 47. P. 10441. https://doi.org/10.1016/j.ijhydene.2022.01.099
  4. 4. Corigliano O., Pagnotta L., Fragiacomo P. // Sustainability. 2022. V. 14. P. 15276. https://doi.org/10.3390/su142215276
  5. 5. Klyndyuk A.I., Zhuravleva Ya.Yu. // Russ. J. Inorg. Chem. 2022. V. 67. P. 2084. https://doi.org/10.1134/S0036023622601404
  6. 6. Pişkin F. // Russ. J. Inorg. Chem. 2022. V. 67. P. 1239. https://doi.org/10.1134/S0036023622080216
  7. 7. Filonova E., Medvedev D. // Nanomaterials. 2022. V. 12. P. 1991. https://doi.org/10.3390/nano12121991
  8. 8. Chen Z., Jiang Q., Cheng F. et al. // J. Mater. Chem. A. 2019. V. 7. P. 6099. https://doi.org/10.1039/C8TA11957K
  9. 9. Stroeva A.Y., Gorelov V.P., Balakireva V.B. // Russ. J. Electrochem. 2010. V. 46. P. 552. https://doi.org/ 10.1134/S1023193510070116
  10. 10. Kuz’min A.V., Stroeva A.Yu., Gorelov V.P. // Russ. J. Electrochem. V. 54. P. 43. https://doi.org/10.1134/S1023193518010056
  11. 11. Egorova A.V., Belova K.G., Animitsa I.E. // Int. J. Hydrogen Energy. 2023. V. 48. P. 22685. https://doi.org/10.1016/j.ijhydene.2023.03.263
  12. 12. Gambino M., Tommaso S.D., Giannici F. et al. // J. Chem. Phys. 2017. V. 147. P. 144702. https://doi.org/ 10.1063/1.4993705
  13. 13. Kim H.-L., Kim S., Lee K.-H. et al. // J. Power Sources. 2014. V. 267. P. 723. https://doi.org/https://doi.org/ 10.1016/j.jpowsour.2014.06.006
  14. 14. Dhanasekaran P., Gupta N.M. // Mater. Res. Bull. 2012. V. 47. P. 1217. https://doi.org/10.1016/j.materresbull.2012.01.031
  15. 15. Sood K., Singh K., Pandey O.P. // Physica B. 2015. V. 456. P. 250. https://doi.org/10.1016/j.physb. 2014.08.036
  16. 16. Sood K., Singh K., Basu S. et al. // Ionics. 2015. V. 21. P. 2839. https://doi.org/10.1007/s11581-015-1461-8
  17. 17. He H., Huang X., Chen L. // Solid State Ionics. 2000. V. 130. P. 183. https://doi.org/10.1016/S0167-2738 (00)00666-4
  18. 18. He H., Huang X., Chen L. // Electrochim. Acta. 2001. V. 46. P. 2871. https://doi.org/10.1016/S0013-4686 (01)00508-4
  19. 19. Bakiz B., Guinneton F., Arab M. et al. // Adv. Mater. Sci. Eng. 2010. V. 2010. P. 360597. https://doi.org/ 10.1155/2010/360597
  20. 20. Shannon R.D. // Acta Crystallogr., Sect. A: Found. Crystallogr. 1976. V. 32. P. 751. https://doi.org/10.1107/S0567739476001551
  21. 21. Nishiyama S., Kimura M., Hattori T. // Key Eng. Mater. 2001. V. 216. P. 65. https://doi.org/10.4028/www.scientific.net/KEM.216.65
  22. 22. Smyth D.M. // Solid State Ionics. 2000. V. 129. P. 5. https://doi.org/10.1016/S0167-2738 (99)00312-4
  23. 23. Lany S., Zunger A. // Phys. Rev. B. 2009. V. 80. P. 085202. https://doi.org/10.1103/PhysRevB.80.085202
  24. 24. Dong Ya., Huang Yi., Ding D. et al. // Acta Mater. 2021. V. 203. P. 116487. https://doi.org/10.1016/j.actamat.2020.116487
  25. 25. Kilner J.A., Brook R.J. // Solid State Ionics. 1982. V. 6. P. 237. https://doi.org/10.1016/0167-2738 (82)90045-5
  26. 26. Sammells A.F., Cook R.L., White J.H. et al. // Solid State Ionics. 1992. V. 52. P. 111.
  27. 27. Tantardini Chr., Oganov A.R. // Nature Commun. 2021. V. 12. P. 2087. https://doi.org/10.1038/s41467-021-22429-0
  28. 28. Воронов В.Н. Ионная подвижность и свойства соединений ABX3 типа перовскита. Красноярск, 2006. 64 с.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library