ОХНМЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

Уточнение фазовой диаграммы системы MnSe–Ga2Se3

Код статьи
10.31857/S0044457X24010089-1
DOI
10.31857/S0044457X24010089
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 69 / Номер выпуска 1
Страницы
67-74
Аннотация
Методами дифференциального термического и рентгенофазового анализа повторно изучена система MnSe–Ga2Se3 и построена ее фазовая диаграмма, которая несколько отличается от представленной в литературе. Установлено, что система характеризуется образованием промежуточной фазы (ã) с широкой (47–61 мол. % Ga2Se3) областью гомогенности. На основе Ga2Se3 также обнаружена широкая область (~30 мол. %) твердых растворов. Показано, что ã-фаза претерпевает полиморфное превращение ã′ ↔ ã при 1183–1193 K для различных составов. Высокотемпературная ã′-фаза имеет точку минимума плавления с координатами 1205 K и 55 мол. % Ga2Se3 и находится в перитектическом равновесии с твердыми растворами на основе обоих исходных бинарных соединений. С учетом порошковых дифракционных данных определены параметры тетрагональной решетки ã-фазы, содержащей 50 и 60 мол. % Ga2Se3. Не подтверждено указанное ранее тройное соединение Mn2Ga2Se5. Проведен сравнительный анализ полученных результатов с литературными данными.
Ключевые слова
селениды марганца-галлия фазовая диаграмма твердые растворы область гомогенности магнитные материалы
Дата публикации
18.09.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
10

Библиография

  1. 1. Hyunjung K., Tiwari A.P., Hwang E. et al. // Adv. Sci. 2018. V. 5. № 7. P. 1800068. https://doi.org/10.1002/advs.201800068
  2. 2. Xia C., Li J. // J. Semicond. 2016. V. 37. № 5. P. 051001. https://doi.org/10.1088/1674-4926/37/5/051001
  3. 3. Wyżga P., Veremchuk I., Bobnar M. et al. // Z. Anorg. Allg. Chem. 2020. V. 646. № 14. P. 1091. https://doi.org/10.1002/zaac.202000014
  4. 4. Karthikeyan N., Aravindsamy G., Balamurugan P. et al. // Mater. Res. Innovations. 2018. V. 22. № 5. Р. 278. https://doi.org/10.1080/14328917.2017.1314882
  5. 5. Bose A., Banerjee R., Narayan A. // Condens. Matter. 2022. V. 2. P. 1. https://arxiv.org/pdf/2202.03317v2.pdf
  6. 6. Yang J., Zhou Z., Fang J. et al. // Appl. Phys. Lett. 2019. V. 115. № 22. P. 222101. https://doi.org/10.1063/ 1.5126233
  7. 7. Hwang Y., Choi J., Ha Y. et al. // Curr. Appl. Phys. 2020. V. 20. № 1. P. 212. https://doi.org/10.1016/j.cap.2019. 11.005
  8. 8. Sagredo V., Torres T.E., Delgado G.E. et al. // Rev. Mex. Fís. 2019. V. 65. № 1. P. 14. https://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0035-001X2019000100014
  9. 9. Zhang B., Liu Y., Zhu H. et al. // Environ. Sci. Pollut. Res. 2023. V. 30. P. 13438. https://doi.org/10.1007/s11356-022-22929-6
  10. 10. Pauliukavets S.A., Bychek I.V., Patapovich M.P. // Inorg. Mater: Appl. Res. 2018. V. 9. № 2. P. 207. https://doi.org/10.1134/S2075113318020223 [Павлюковец С.А., Бычек И.В., Патапович М.П. // Перспективные материалы. 2017. № 12. С. 26. https://www.j-pm.ru/12-articles-1-9]
  11. 11. Kim H., Liu X., Kim M. et al. // Chem. Mater. 2021. V. 33. № 1. P. 164. https://doi.org/10.1021/acs.chemmater.0c03146
  12. 12. Eremeev S.V., Otrokov M.M., Chulkov E.V. // Nano Lett. 2018. V. 18. № 10. P. 6521. https://doi.org/10.1021/acs.nanolett.8b03057
  13. 13. Otrokov M.M., Klimovskikh I.I., Bentmann H. et al. // Nature. 2019. V. 576. № 7787. P. 416. https://doi.org/10.1038/s41586-019-1840-9
  14. 14. Haoyu L., Yiya H., Qixun G. et al. // J. Phys. D: Appl. Phys. 2023. V. 56. № 4. P. 045302. https://doi.org/ 10.1088/1361-6463/aca61e
  15. 15. Klimovskikh I.I., Otrokov M.M., Estyunin D. et al. // npj Quantum Mater. 2020. V. 5. № 54. https://doi.org/ 10.1038/s41535-020-00255-9
  16. 16. Estyunin D.A., Klimovskikh I.I., Shikin A.M. et al. // APL Mater. 2020. V. 8. № 2. P. 021105. https://doi.org/ 10.1063/1.5142846
  17. 17. Walko R.C., Zhu T., Bishop A.J. et al. // Phys. E. 2022. V. 143. P. 115391. https://doi.org/10.1016/j.physe. 2022.115391
  18. 18. Yonghao Y., Xintong W., Hao L. et al. // Nano Lett. 2020. V. 20. № 5. P. 3271. https://dx.doi.org/10.1021/acs.nanolett.0c00031
  19. 19. Zhou L., Tan Z., Yan D. et al. // Phys. Rev. B: Condens. Matter. 2020. V. 102. № 8. P. 085114. https://doi.org/ 10.1103/PhysRevB.102.085114
  20. 20. Garrity K.F., Chowdhury S., Tavazza F.M. // Phys. Rev. Materials. 2021. V. 5. № 2. P. 024207. https://doi.org/ 10.1103/PhysRevMaterials.5.024207
  21. 21. Ovchinnikov D., Huang X., Lin Z. et al. // Nano Lett. 2021. V. 21. № 6. P. 2544. https://dx.doi.org/10.1021/acs.nanolett.0c05117
  22. 22. Swatek P., Wu Y., Wang L.L. // Phys. Rev. B: Condens. Matter. 2020. V. 101. № 16. P. 161109. https://doi.org/ 10.1103/PhysRevB.101.161109
  23. 23. Zhu T., Bishop A.J., Zhou T. et al. // Nano Lett. 2021. V. 21. № 12. P. 5083. https://doi.org/10.1021/acs.nanolett.1c00141
  24. 24. Garnica M., Otrokov M., Aguilar P.C. et al. // npj Quantum Mater. 2022. V. 7. P. 1. https://doi.org/ 10.1038/s41535-021-00414-6
  25. 25. Sharan A., Sajjad M., Singh D.J. et al. // Phys. Rev. Materials. 2022. V. 6. № 9. P. 094005. https://doi.org/ 10.1103/PhysRevMaterials.6.094005
  26. 26. Tarasov A.V., Makarova T.P., Estyunin D.A. et al. // Symmetry. 2023. V. 15. № 2. P. 469. https://doi.org/10.3390/sym15020469
  27. 27. Djieutedjeu H., Lopez J.S., Lu R. et al. // J. Am. Chem. Soc. 2019. V. 141. № 23. P. 9249. https://doi.org/10.1021/jacs.9b01884
  28. 28. Levy I., Forrester C., Ding X. et al. // Scientific Reports. 2023. V. 13. P. 7381. https://doi.org/10.1038/s41598-023-34585-y
  29. 29. Moroz N.A., Lopez J.S., Djieutedjeu H. et al. // Chem. Mater. 2016. V. 28. № 23. P. 8570. https://doi.org/ 10.1021/acs.chemmater.6b03293
  30. 30. Levy I., Forrester C., Deng H. et al. // Cryst. Growth Des. 2022. V. 22. № 5. P. 3007. https://doi.org/10.1021/acs.cgd.1c01453
  31. 31. Liu Y., Kang Ch., Stavitski E. et al. // Phys. Rev. B. 2018. V. 97. № 15. P. 155202. https://doi.org/10.1103/PhysRevB.97.155202
  32. 32. Babanly M.B., Chulkov E.V., Aliev Z.S. et al. // Russ. J. Inorg. Chem. 2017. V. 62. № 13. P. 1703. https://doi.org/10.1134/S0036023617130034
  33. 33. Babanly M.B., Mashadiyeva L.F., Babanly D.M. et al. // Russ. J. Inorg. Chem. 2019. V. 64. № 13. P. 1649. https://doi.org/10.1134/S0036023619130035
  34. 34. Imamaliyeva S.Z., Babanly D.M., Qasymov V.A. et al. // Russ. J. Inorg. Chem. 2021. V. 66. № 4. Р. 558. https://doi.org/10.1134/S0036023621040124 [Имамалиева С.З., Бабанлы Д.М., Гасымов В.А. и др. // Журн. неорган. химии. 2021. T. 66. № 4. C. 519. https://doi.org/10.31857/S0044457X21040127]
  35. 35. Mammadov F.M., Amiraslanov I.R., Imamaliyeva S.Z. et al. // J. Phase Equilib. Diffus. 2019. V. 40. № 6. P. 787. https://doi.org/10.1007/s11669-019-00768-2
  36. 36. Mamedov F.M., Babanly D.M., Amiraslanov I.R. et al. // Russ. J. Inorg. Chem. 2020. V. 65. № 11. P. 1747. https://doi.org/10.1134/S0036023620110121 [Мамедов Ф.М., Бабанлы Д.М., Амирасланов И.Р. и др. // Журн. неорган. химии. 2020. T. 65. № 11. C. 1535. https://doi.org/10.31857/S0044457X20110124]
  37. 37. Mammadov F.М., Amiraslanov I.R., Aliyeva Y.R. et al. // Acta Chim. Slovenica. 2019. V. 66. P. 466. https://doi.org/10.17344/acsi.2019.4988
  38. 38. Mammadov F.M., Babanly D.M., Amiraslanov I.R. et al. // Russ. J. Inorg. Chem. 2021. V. 66. № 10. P. 1533. https://doi.org/10.1134/S0036023621100090 [Мамедов Ф.М., Бабанлы Д.М., Амирасланов И.Р. и др. // Журн. неорган. химии. 2021. T. 66. № 10. C. 1457. https://doi.org/ 10.31857/S0044457X21100093]
  39. 39. Mammadov F.M., Niftiev N.N., Jafarov Ya.I. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 10. P. 1623. https://doi.org/10.1134/S0036023622600769 [Мамедов Ф.М., Нифтиев Н.Н., Джафаров Я.И. и др. // Журн. неорган. химии. 2022. T. 67. № 10. C. 1459. https://doi.org/ 10.31857/S0044457X22100142]
  40. 40. Pardo M.P., Flahaut J. // Mater. Res. Bull. 1978. V. 13. № 11. P. 1231. https://doi.org/10.1016/0025-5408 (78) 90214-3
  41. 41. Бабаева П.К., Рустамов П.Г. // Исследования в области неорганической и физической химии. Баку: Элм, 1981. C. 53.
  42. 42. Диаграммы состояния двойных металлических систем / Под ред. Лякишева Н.Р. М.: Машиностроение, 2001. Т. 3. Кн. 1. С. 382.
  43. 43. Massalski T.B. Binary alloy phase diagrams. Ohio: ASM İnternational. Materials Park, 1990. 3875 p.
  44. 44. Абрикосов Н.Х., Банкина В.Ф., Порецкая Л.В. и др. Полупроводниковые халькогениды и сплавы на их основе. М.: Наука, 1975. 220 с.
  45. 45. Cannas M., Garbato L., Geddo Lehmann A. et al. // Cryst. Res. Technol. 1998. V. 33. № 3. P. 417. https://doi.org/10.1002/ (SICI)1521-4079(1998)33:33.0.CO;2-2
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека