- PII
- 10.31857/S0044457X24010073-1
- DOI
- 10.31857/S0044457X24010073
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 69 / Issue number 1
- Pages
- 58-66
- Abstract
- Series of samples of quasi–ternary Li2O–Mn2O3 – Eu2O3 system, synthesized from of precursors subjected to preliminary mechanochemical activation and annealed in air at temperatures of 700–1100°C have been systematically studied by powder X–ray diffraction(pXRD) and thermal analysis (TG–DSC) methods. The possibility of substituting Mn for Eu for the LiMn2–xEuxO4 spinel phase is estimated. Within the framework of the Li–Mn–Eu concentration triangle, a subsolidus isobaric diagram and a projection of the liquidus surface of the Li–Mn–Eu–O system were constructed using models of polythermal phase diagrams of the LiEuO2–LiMnO2 and LiEuO2–LiMn2O4 sections. The temperatures of eutectic equilibria with the participation of three crystalline phases and a melt were determined.
- Keywords
- фазовые равновесия твердые растворы шпинель многокомпонентные системы литий-ионные аккумуляторы
- Date of publication
- 17.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 12
References
- 1. Thackeray M.M., Amine K. // Nature Energy. 2021. V. 6. P. 933. https://doi.org/10.1038/s41560-021-00860-3
- 2. Goodenough J.B. // Nobel Lecture. 2019. V. 8. P. 165.
- 3. Armstrong A.R., Bruce P.G. // Nature. 1996. V. 381. № 6582. P. 499. https://doi.org 10.1038/381499a0
- 4. Thackeray M.M., Johnson C.S., Vaughey J.T. et al. // J. Mater. Chem. 2005. V. 15. № 23. P. 2257. http://doi.org/10.1039/b417616m
- 5. Xie Y., Xu Y., Yan L. et al. // Solid State Ionics. 2005. V. 176. № 35–36. P. 2563. https://doi.org/10.1016/j.ssi.2005.06.022
- 6. Xie Y., Yang R., Yan L. et al. // J. Power Sources. 2007. V. 168. P. 272. https://doi.org/10.1016/j.jpowsour.2007.01.019
- 7. Feng C., Tang H., Zhang K., Sun J. // Mater. Chem. Phys. 2003. V. 80. № 3. P. 573. https://doi.org/10.1016/S0254-0584 (03)00115-9
- 8. Elsabawy K.M., Abou-Sekkina M.M., Elmetwaly E.C. // Solid State Sci. 2011. V. 13. № 3. P. 601. https://doi.org/10.1016/j.solidstatesciences.2010.12.033
- 9. Tian Y., Kang X., Liu L. et al. // J. Rare Earths. 2008. V. 26. № 2. P. 279. https://doi.org/10.1016/S1002-0721 (08)60081-2
- 10. Arumugam D., Paruthimal Kalaignan G., Manisankar P. // Solid State Ionics. 2008. V. 179. № 15–16. P. 580. https://doi.org/10.1016/j.ssi.2008.04.010
- 11. Zhang H.-L., Ren R., An J. // Mater. Sci. Forum. 2011. V. 686. P. 716. https://doi.org/10.4028/www.scientific.net/MSF.686.716
- 12. Michalska M., Ziókowska D.A., Jasiński J.B. et al. // Electrochim. Acta. 2018. V. 276. P. 37. https://doi.org/10.1016/j.electacta.2018.04.165
- 13. Michalska M., Hamankiewicz B., Ziółkowska D. et al. // Electrochim. Acta. 2014. V. 136. P. 286. https://doi.org/10.1016/j.electacta.2014.05.108
- 14. Ha H.-W., Yun N.J., Kim K. // Electrochim. Acta. 2007. V. 52. № 9. P. 3236. https://doi.org/10.1016/j.electacta.2006.09.066
- 15. Sun H., Chen Y., Xu C. et al. // J. Solid State Electrochem. 2012. V. 16. № 3. P. 1247. https://doi.org/10.1007/s10008-011-1514-5
- 16. Sighal R., Das S.R., Tomas M.S. et al. // J. Power Sources. 2007. V. 164. № 2. P. 857. https://doi.org/ 10.1016/j.jpowsour.2006.09.098
- 17. Yang S.T., Jia J.H., Ding L., Zhang M.C. // Electrochim. Acta. 2003. V. 48. № 5. P. 569. https://doi.org/10.1016/S0013-4686 (02)00726-0
- 18. Khedr A.M., Abou-Sekkina M.M., El-Metwaly F.G. // J. Electronic. Mater. 2013. V. 42. № 6. P. 1275. https://doi.org/10.1007/s11664-013-2588-x
- 19. Balaji S.R.K., Muharasu D., Shanmugan S. et al. // Ionics. 2010. V. 16. P. 351. https://doi.org/10.1007/s11581-009-0400-y
- 20. Abou-Sekkina M.M., Khedr A.M., El-Metwaly F.G. // Chem. Mater. Res. 2013. V. 3. № 4. P. 15.
- 21. Lee D.K., Han S.C., Ahn D. et al. // Appl. Mater. Interfaces. 2012. V. 4. № 12. P. 6842. https://doi.org/10.1021/am302003r
- 22. Liu H.W., Zhang K.L. // Mater. Lett. 2004. V. 58. P. 3049. https://doi.org/10.1016/j.matlet.2004.05.040
- 23. Liu H.W., Zhang K.L. // Inorg. Mater. 2005. V. 61. № 4. P. 646. https://doi.org/10.1007/s10789-005-0183-0
- 24. Han S.C., Singh S.P., Hwang Y.-H., et al. // J. Electrochem. Soc. 2012. V. 159. № 11. P. A1867. https://doi.org/10.1149/2.009212jes
- 25. Balaji S., Mani Chadran T., Muharasu D. // Ionics. 2012. V. 18. P. 549. https://doi.org/10.1007/s11581-011-0650-3
- 26. Ram P., Gören A., Ferdov S. et al. // New J. Chem. 2016. V. 40. № 7. P. 6244. https://doi.org/10.1039/c6nj00198j
- 27. Su Z., Xu M.-W., Ye S.-H., Wang Y.-L. // Acta Phys. Chim. Sin. 2009. V. 25. № 6. P. 1232. https://doi.org/10.3866/PKU.WHXB20090629
- 28. Zhao G., He J., Zhang C. et al. // Rare Metal Mater. Eng. (China). 2008. V. 37. № 4. P. 709.
- 29. Zhou Z.-H., Mei T.-Q. // Modern Chem. Ind. (China). 2009. V. 29. № 9. P. 246.
- 30. Yuzer A., Ozkendir O.M. // J. Electronic Mater. 2016. V. 45. № 2. P. 989. https://doi.org/10.1007/s11664-015-4256-9
- 31. Paulsen J.M., Dahn J.R. // Chem. Mater. 1999. V. 11. № 11. P. 3065. https://doi.org/10.1021/cm9900960
- 32. Buzanov G.A., Nipan G.D., Zhizhin K.Yu., Kuznetsov N.T. // Russ. J. Inorg. Chem. 2017. V. 62. № 5. P. 551. https://doi.org/10.1134/S0036023617050059
- 33. Buzanov G.A., Nipan G.D. // Dokl. Phys. Chem. 2023. Accepted manuscript.
- 34. Balakirev V.F., Golikov Yu.V. // Inorg. Mater. 2003. V. 39. Suppl. 1. P. S1. https://doi.org/10.1023/A:1024115817536
- 35. Yankin A.M., Vedmid’ L.B., Fedorova O.M. // Russ. J. Phys. Chem. 2012. V. 86. P. 345. https://doi.org/10.1134/S003602441203034X
- 36. Balakirev V.F., Vedmid’ L.B., Fedorova O.M. // Russ. J. Inorg. Chem. 2022. V. 67. P. 868. https://doi.org/10.1134/S0036023622060043
- 37. Buzanov G.A., Nipan G.D. // Russ. J. Inorg. Chem. 2022. V. 67. № 7. P. 1035. https://doi.org/10.1134/S0036023622070051
- 38. Bärnighausen H. // Z. Anorg. Allg. Chem. 1970. V. 374. № 2. P. 201. https://doi.org/10.1002/zaac.19703740209
- 39. Nyokong T., Greedan J.E. // Inorg. Chem. 1982. V. 21. № 1. P. 398. https://doi.org/10.1021/ic00131a071
- 40. Barad C., Kimmel G., Hayun H. et al. // Materials. 2020. V. 13. № 9. Art. 2201. https://doi.org/10.3390/ma13092201
- 41. Waintal A., Gondrand M. // Mater. Res. Bull. 1967. V. 2. № 9. P. 889. https://doi.org/10.1016/0025-5408 (67) 90099-2
- 42. Казенас Е.К., Цветков Ю.В. Испарение оксидов. М.: Наука, 1997. 543 с.
- 43. Grundy A.N., Hallstedt B., Gauckler L.J. // J. Phase Equilib. 2003. V. 24. P. 21. https://doi.org/10.1007/s11669-003-0004-6