- PII
- 10.31857/S0044457X23601220-1
- DOI
- 10.31857/S0044457X23601220
- Publication type
- Status
- Published
- Authors
- Volume/ Edition
- Volume 68 / Issue number 12
- Pages
- 1702-1714
- Abstract
- Methods for the synthesis of LaNi1/3Sb5/3O6 with a rosiaite structure have been developed using citrate method and coprecipitation followed by annealing. The influence of synthesis conditions on the morphology of the samples has been demonstrated. A comparative analysis of the catalytic properties of LaNi1/3Sb5/3O6 synthesized by various methods, in the reaction of CO oxidation has been carried out. The catalyst synthesized by the citrate method demonstrated the greatest efficiency and stability (the temperature of 90% CO conversion was T90 = 336°C). The LaNi1/3Sb5/3O6 surface was studied before and after catalysis by in situ diffuse reflectance IR spectroscopy, X-ray photoelectron spectroscopy, and temperature-programmed O2 desorption. It has been shown that the catalytic oxidation of CO on the LaNi1/3Sb5/3O6 surface proceeds according to the Mars–van Krevelen mechanism and is accompanied by redox Sb3+ ↔ Sb5+ processes. It has been established that no contamination of the sample surface occurs during the catalysis process.
- Keywords
- сложный оксид никеля розиаит соосаждение цитратный синтез РФЭС ИК-спектры диффузного отражения <i>in situ</i> ТПД О<sub>2</sub>
- Date of publication
- 01.12.2023
- Year of publication
- 2023
- Number of purchasers
- 0
- Views
- 44
References
- 1. Seiyama T. // Catal. Rev. 1992. V. 34. P. 281. https://doi.org/10.1080/01614949208016313
- 2. Eyssler A. Mandaliev P., Winkler A. et al. // J. Phys. Chem. C. 2010. V. 114. P. 4584. https://doi.org/10.1021/jp911052s
- 3. Tao F.F., Shan Jj., Nguyen L. et al. // Nat. Commun. 2015. V. 6. P. 7798. https://doi.org/10.1038/ncomms8798
- 4. Chang H., Bjørgum E., Mihai O., et al. // ACS Catal. 2020. V. 10. P. 3707. https://doi.org/10.1021/acscatal.9b05154
- 5. Zhang X., House S.D., Tang Y. et al. // ACS Sustain. Chem. Eng. 2018. V. 6. P. 6467. https://doi.org/10.1021/acssuschemeng.8b00234
- 6. Wang D., Xu R., Wang X., Li Y. // Nanotechnology. 2006. V. 17. P. 979. https://doi.org/10.1088/0957-4484/17/4/023
- 7. Royer S., Duprez D. // ChemCatChem. 2011. V. 3. P. 24. https://doi.org/10.1002/cctc.201000378
- 8. Zhu J., Gao Q. // Micropor. Mesopor. Mater. 2009. V. 124. P. 144. https://doi.org/10.1016/j.micromeso.2009.05.003
- 9. Mahammadunnisa Sk., Manoj Kumar Reddy P., Lingaiah N., Subrahmanyam Ch. // Catal. Sci. Technol. 2013. V. 3. P. 730. https://doi.org/10.1039/C2CY20641B
- 10. Chen J., Zou X., Rui Z., Ji H. // Energy Technol. 2020. V. 8. P. 1900641. https://doi.org/10.1002/ente.201900641
- 11. Egorysheva A.V., Ellert O.G., Liberman E.Yu. et al. // J. Alloys Compd. 2019. V. 777. P. 655. https://doi.org/10.1016/j.jallcom.2018.11.008
- 12. Liberman E.Yu., Ellert O.G., Naumkin A.V. et al. // Russ. J. Inorg. Chem. 2020. V. 65. P. 592. https://doi.org/10.1134/S0036023620040117
- 13. Egorysheva A.V., Ellert O.G., Liberman E.Yu. et al. // Russ. J. Inorg. Chem. 2022. V. 67. P. 2127. https://doi.org/10.1134/S0036023622601349
- 14. Ellert O.G., Egorysheva A.V., Golodukhina S.V. et al. // Russ. Chem. Bull. 2021. V. 70. P. 2397. https://doi.org/10.1007/s11172-021-3359-0
- 15. Birchall T., Connor J.A., Hillier L.H. // J. Chem. Soc. Dalton Trans. 1975. V. 20. P. 2003. https://doi.org/10.1039/dt9750002003
- 16. Carlson T.A. Auger electron spectroscopy // Photoelectron Auger Spectroscopy. Boston: Springer US, 1975. P. 279. https://doi.org/10.1007/978-1-4757-0118-0_6
- 17. Garbassi F. // Surf. Interface Anal. 1980. V. 2. P. 165. https://doi.org/10.1002/sia.740020502
- 18. Teterin Yu.A., Teterin A.Yu., Utkin I.O., Ryzhkov M.V. // J. Electron Spectros. Relat. Phenomena. 2004. V. 137–140. P. 601. https://doi.org/10.1016/j.elspec.2004.02.014
- 19. Little L.H. Infrared Spectra of Adsorbed Species. London: Academic Press, 1966. 428 p.
- 20. Yamazoe N., Fuchigami J., Kishikawa M., Seiyama T. // Surf. Sci. 1979. V. 86. P. 335. https://doi.org/10.1016/0039-6028 (79)90411-4