RAS Chemistry & Material ScienceЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

New Method for Synthesis of Substituted 1-Amidine-closo-decaborates [1-B10H9NH=C(R1)NHR2] (R1 = Me, iPr, Ph; R2 = nBu, Bn)

PII
10.31857/S0044457X23600913-1
DOI
10.31857/S0044457X23600913
Publication type
Status
Published
Authors
Volume/ Edition
Volume 68 / Issue number 11
Pages
1523-1527
Abstract
The process of nucleophilic substitution of the phenyliodonium substituent in the [1-B10H9IPh]– anion with primary amines in organic nitriles has been studied. It has been shown that the reaction proceeds with the formation of a mixture of products, namely, 1-monoalkylammonio-closo-decaborate and the corresponding amidine, which is formed when an amine molecule is added to the nitrile. The resulting products have been characterized by 1H, 11B, 13C NMR spectroscopies, IR absorption spectroscopy, and high-resolution ESI mass spectroscopy.
Keywords
арилиодониевые производные <i>клозо</i>-декаборатный анион амидины алкиламмонио-<i>клозо</i>-декабораты
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
12

References

  1. 1. Spokoyny A.M. // Pure Appl. Chem. 2013. V. 85. № 5. P. 903. https://doi.org/10.1351/PAC-CON-13-01-13
  2. 2. Barth R.F., Coderre J.A., Vicente M.G.H. et al. // Clinical Cancer Research. 2005. V. 11. № 11. P. 3987. https://doi.org/10.1158/1078-0432.CCR-05-0035
  3. 3. Olid D., Núñez R., Viñas C. et al. // Chem. Soc. Rev. 2013. V. 42. № 8. P. 3318. https://doi.org/10.1039/C2CS35441A
  4. 4. Stogniy M.Y., Erokhina S.A., Sivaev I.B. et al. // Phosphorus Sulfur Silicon Relat Elem. 2019. P. 1. https://doi.org/10.1080/10426507.2019.1631312
  5. 5. Evamarie Hey-Hawkins C.V.T. // Boron-Based Compounds: Potential and Emerging Applications in Medicine, John Wiley & Sons Ltd, 2018.
  6. 6. Geis V., Guttsche K., Knapp C. et al. // Dalton Trans. 2009. № 15. P. 2687. https://doi.org/10.1039/b821030f
  7. 7. Matveev E.Yu., Avdeeva V.V., Zhizhin K.Yu. et al. // Inorganics (Basel). 2022. V. 10. № 12. P. 238. https://doi.org/10.3390/inorganics10120238
  8. 8. Avdeeva V.V., Malinina E.A., Kuznetsov N.T. // Coord. Chem. Rev. 2022. V. 469. P. 214636. https://doi.org/10.1016/j.ccr.2022.214636
  9. 9. Rao M.H., Muralidharan K. // Polyhedron. 2016. V. 115. P. 105. https://doi.org/10.1016/j.poly.2016.03.062
  10. 10. Derdziuk J., Malinowski P.J., Jaroń T. // Int. J. Hydrogen. Energy. 2019. V. 44. № 49. P. 27030. https://doi.org/10.1016/j.ijhydene.2019.08.158
  11. 11. Novopashina D.S., Vorobyeva M.A., Venyaminova A. // Front. Chem. 2021. V. 9. № March. P. 1. https://doi.org/10.3389/fchem.2021.619052
  12. 12. Varkhedkar R., Yang F., Dontha R. et al. // ACS Cent. Sci. 2022. V. 8. № 3. P. 322. https://doi.org/10.1021/acscentsci.1c01132
  13. 13. Michiue H., Sakurai Y., Kondo N. et al. // Biomaterials. 2014. V. 35. № 10. P. 3396. https://doi.org/10.1016/j.biomaterials.2013.12.055
  14. 14. Nelyubin A.V., Selivanov N.A., Klyukin I.N. et al. // Russ. J. Inorg. Chem. 2021. V. 66. № 9. P. 1390. https://doi.org/10.1134/S0036023621090096
  15. 15. Koganei H., Tachikawa S., El-Zaria M.E. et al. // New J. Chem. 2015. V. 39. № 8. P. 6388. https://doi.org/10.1039/C5NJ00856E
  16. 16. Zhang Y., Sun Y., Wang T. et al. // Molecules. 2018. V. 23. № 12. P. 3137. https://doi.org/10.3390/molecules23123137
  17. 17. Sivaev I.B., Prikaznov A.V., Naoufal D. // Collect. Czech. Chem. Commun. 2010. V. 75. № 11. P. 1149. https://doi.org/10.1135/cccc2010054
  18. 18. Sivaev I.B., Votinova N.A., Bragin V.I. et al. // J. Organomet. Chem. 2002. V. 657. № 1–2. P. 163. https://doi.org/10.1016/S0022-328X (02)01419-5
  19. 19. Zhdanov A.P., Voinova V.V., Klyukin I.N. et al. // Russ. J. Coord. Chem. 2019. V. 45. № 8. P. 563. https://doi.org/10.1134/S1070328419080098
  20. 20. Holub J., El Anwar S., Jelínek T. et al. // Eur. J. Inorg. Chem. 2017. V. 2017. № 38. P. 4499. https://doi.org/10.1002/ejic.201700651
  21. 21. Kaszyński P., Ringstrand B. // Angew. Chem. Int. Ed. 2015. V. 54. № 22. P. 6576. https://doi.org/10.1002/anie.201411858
  22. 22. Rzeszotarska E., Novozhilova I., Kaszyński P. // Inorg. Chem. 2017. V. 56. № 22. P. 14351. https://doi.org/10.1021/acs.inorgchem.7b02477
  23. 23. Kaszynski P., Huang J., Jenkins G.S. et al. // Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A: Mol. Cryst. Liq. Cryst. 1995. V. 260. № 1. P. 315. https://doi.org/10.1080/10587259508038705
  24. 24. Kapuściński S., Hietsoi O., Pietrzak A. et al. // Chem. Commun. 2022. V. 58. № 6. P. 851. https://doi.org/10.1039/D1CC06485A
  25. 25. Jacob L., Rzeszotarska E., Koyioni M. et al. // Chem. Mater. 2022. V. 34. № 14. P. 6476. https://doi.org/10.1021/acs.chemmater.2c01165
  26. 26. Kapuscinski S., Abdulmojeed M.B., Schafer T.E. et al. // Inorg. Chem. Front. 2021. V. 8. № 4. P. 1066. https://doi.org/10.1039/d0qi01353f
  27. 27. Jankowiak A., Baliński A., Harvey J.E. et al. // J. Mater. Chem. C.: Mater. 2013. V. 1. № 6. P. 1144. https://doi.org/10.1039/c2tc00547f
  28. 28. Zurawiński R., Jakubowski R., Domagała S. et al. // Inorg. Chem. 2018. V. 57. № 16. P. 10442. https://doi.org/10.1021/acs.inorgchem.8b01701
  29. 29. Hietsoi O., Kapuściński S.P., Friedli A.C. et al. // J. Mol. Struct. 2023. V. 1284. P. 135324. https://doi.org/10.1016/j.molstruc.2023.135324
  30. 30. Burdenkova A.V., Zhdanov A.P., Klyukin I.N. et al. // Russ. J. Inorg. Chem. 2021. V. 66. № 11. P. 1616. https://doi.org/10.1134/S0036023621110036
  31. 31. Zhdanov A.P., Polyakova I.N., Razgonyaeva G.A. et al. // Russ. J. Inorg. Chem. 2011. V. 56. № 6. P. 1. https://doi.org/10.1134/S003602361106026X
  32. 32. Nelyubin A.V., Klyukin I.N., Novikov A.S. et al. // Mendeleev Commun. 2021. V. 31. № 2. P. 201. https://doi.org/10.1016/j.mencom.2021.03.018
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library