RAS Chemistry & Material ScienceЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

Structure of the Local Environment and Hyperfine Interactions of 57Fe Probe Nuclei in AMnO3 (A = Sc, In)

PII
10.31857/S0044457X23600779-1
DOI
10.31857/S0044457X23600779
Publication type
Status
Published
Authors
Volume/ Edition
Volume 68 / Issue number 10
Pages
1364-1372
Abstract
The results of a Mössbauer study of hyperfine interactions of 57Fe probe nuclei in isostructural hexagonal manganites h-ScMnO3 and h-InMnO3 are presented. The results of measurements of the Mössbauer spectra at T > TN, as well as calculations of the parameters of the electric field gradient tensor at 57Fe nuclei, demonstrated different behavior of the probe iron ions in these isostructural systems, reflecting the difference in the processes of defect formation in their crystal lattices. On the contrary, measurements at T < TN did not reveal any differences in the local magnetic structure of 57Fe probe atoms in these oxides.
Keywords
гексагональные манганиты мессбауэровская спектроскопия зондовые атомы <sup>57</sup>Fe антиструктурные дефекты
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
12

References

  1. 1. Koehler W.C., Yakel H.L., Wollan E.O. et al. // Phys. Lett. 1964. V. 9. P. 93. https://doi.org/10.1016/0031-9163 (64)90089-7
  2. 2. Wood V.E., Austin A.E., Collings E.W. et al. // Phys. Chem. Solids. 1973. V. 34. P. 859. https://doi.org/10.1016/S0022-3697 (73)80088-5
  3. 3. Fiebig M., Frohlich D., Lottermoser T. et al. // Phys. Rev. B. 2002. V. 65. P. 224421. https://doi.org/10.1103/PhysRevB.65.224421
  4. 4. Munoz A., Alonso J.A., Matinez-Lope M.J. et al. // Phys. Rew. B. 2000. V. 62. P. 9498. https://doi.org/10.1103/PhysRevB.62.9498
  5. 5. Lorenz B. // ISRN. Condens. Matter Phys. 2013. V. 2013. P. 497073. https://doi.org/10.1155/2013/497073
  6. 6. Uusi-Esko K. Synthesis and Characterization of Ternary Manganese Oxides. Diss. for the degree of Doctor of Science in Technology. Aalto University Press, Helsinki, 2011.
  7. 7. Uusi-Esko K., Malm J., Imamura N. et al. // M. Mater. Chem. Phys. 2008. V. 112. P. 1029. https://doi.org/10.1016/j.matchemphys.2008.07.009
  8. 8. Yakel H.L., Koehler W.C., Bertaut E.F. et al. // Acta Crystallogr. 1963. V. 16. P. 957. https://doi.org/10.1107/S0365110X63002589
  9. 9. Fedorova O.M., Balakirev V.F., Golikov Y.V. // Russ. J. Inorg. Chem. 2011. V. 56. P. 173. https://doi.org/10.1134/S0036023611020070
  10. 10. Gilleo. M.A. // Acta Crystallogr. 1957. V. 10. P. 161. https://doi.org/10.1107/S0365110X57000535
  11. 11. Yakel. H.L. // Acta Crystallogr. 1955. V. 8. P. 394. https://doi.org/10.1107/S0365110X55001291
  12. 12. Belik A.A., Kamba S., Savinov M. et al. // Phys. Rev. B. 2009. V. 79. P. 054411. https://doi.org/10.1103/PhysRevB.79.054411
  13. 13. Greedan J.E., Bieringer M., Britten J.F. et al. // J. Solid State Chem. 1995. V. 116. P. 118. https://doi.org/10.1006/jssc.1995.1192
  14. 14. Fabrèges X., Mirebeau I., Petit S. et al. // Phys. Rev. B. 2011. V. 84. P. 054455. https://doi.org/10.1103/PhysRevB.84.054455
  15. 15. Yi W., Presniakov I.A., Sobolev A.V. et al. // Sci. Technol. Adv. Mater. 2015. V. 16. P. 024801. https://doi.org/10.1088/1468-6996/16/2/024801
  16. 16. Glazkova I.S., Sobolev A.V., Yi W. et al. // J. Exp. Theor. Phys. 2018. V. 126. P. 514. https://doi.org/10.1134/S1063776118030135
  17. 17. Glazkova I.S., Smirnova M.N., Kondrat’eva O.N. et al. // Russ. J. Inorg. Chem. 2023. V. 68. https://doi.org/10.1134/S0036023623600387
  18. 18. Тетерин Ю.А., Смирнова М.Н., Маслаков К.И. и др. // Журн. неорган. химии. 2023. Т. 68. № 7. С. 904. https://doi.org/10.31857/S0044457X23600135
  19. 19. Chen H., Yu T., Gao P. // Inorg. Chem. 2013. V. 52. P. 9692. https://doi.org/10.1021/ic4016838
  20. 20. Petricek V., Dusek M., Palatinus L. // Z. Crystallogr. 2014. V. 229. P. 345. https://doi.org/10.1515/zkri-2014-1737
  21. 21. Cockayne E., Levin I., Wu H. et al. // Phys. Rev. B. 2013. V. 87. P. 184413. https://doi.org/10.1103/PhysRevB.87.184413
  22. 22. Bekheet M.F., Svoboda I., Liu N. et al. // J. Solid State Chem. 2016. V. 241. P. 54. https://doi.org/10.1016/j.jssc.2016.05.031
  23. 23. Sobolev A.V., Akulenko A.A., Glazkova I.S. et al. // J. Phys. Chem. C. 2018. V. 122. P. 19767. https://doi.org/10.1021/acs.jpcc.8b05516
  24. 24. Matsnev M.E., Rusakov V.S. // AIP Conf. Proc. 2012. V. 1489. P. 178. https://doi.org/10.1063/1.4759488
  25. 25. Menil F. // J. Phys. Chem. Solids. 1985. V. 46. P. 763. https://doi.org/10.1016/0022-3697 (85)90001-0
  26. 26. Presniakov I.A., Rusakov V.S., Gubaidulina T.V. et al. // Phys. Rev. B. 2007. V. 76. P. 214407. https://doi.org/10.1103/PhysRevB.76.214407
  27. 27. Glazkova Y.S., Terada N., Matsushita Y. et al. // Inorg. Chem. 2015. V. 54. P. 9081. https://doi.org/10.1021/acs.inorgchem.5b01472
  28. 28. Kim S.J., Demazeau G., Presnyakov I.A. et al. // Russ. J. Inorg. Chem. 2003. V. 48. P. 1394.
  29. 29. Presnyakov I.A., Rusakov V.S., Sobolev A.V. et al. // Russ. J. Inorg. Chem. 2009. V. 54. P. 1957. https://doi.org/10.1134/S0036023609120195
  30. 30. Belik A.A., Matsushita Y., Tanaka M. et al. // Angew. Chem. Int. Ed. 2010. V. 49. P. 7723. https://doi.org/10.1002/anie.201003080
  31. 31. Shannon R.D., Fischer R.X. // Phys. Rev. B. 2006. V. 73. P. 235111. https://doi.org/10.1103/PhysRevB.73.235111
  32. 32. Sobolev A.V., Kozlyakova E.S., Glazkova I.S. et al. // J. Phys. Chem. C. 2018. V. 122. P. 19746. https://doi.org/10.1021/acs.jpcc.8b05122
  33. 33. Azuma M., Takata K., Saito T. et al. // J. Am. Chem. Soc. 2005. V. 127. P. 8889. https://doi.org/10.1021/ja0512576
  34. 34. Yi W., Princep A.J., Guo Y. et al. // Inorg. Chem. 2015. V. 54. P. 8012. https://doi.org/10.1021/acs.inorgchem.5b01195
  35. 35. Yamada I., Murakami M., Hayashi N. et al. // Inorg. Chem. 2016. V. 55. P. 1715. https://doi.org/10.1021/acs.inorgchem.5b02623
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library