- PII
- 10.31857/S0044457X23600548-1
- DOI
- 10.31857/S0044457X23600548
- Publication type
- Status
- Published
- Authors
- Volume/ Edition
- Volume 68 / Issue number 10
- Pages
- 1433-1446
- Abstract
- Bismuth(III) hexamethylenedithiocarbamate (HmDtc) [Bi2{S2CN(CH2)6}6] (I) and its solvated with dimethyl sulfoxide form [Bi2(S2CNHm)6]⋅2(CH3)2SO (II) have been obtained. The crystal structure of compound I shows an unusual alternation of two unsymmetrical isomeric pseudo-binuclear [Bi1/1B(HmDtc)3···Bi1A/1C(HmDtc)3] molecules, each of which involves two non-equivalent mononuclear moieties combined by secondary Bi···S bonds. The solvation of complex I leads to the structural unification of isomeric [Bi(HmDtc)3] molecules followed by their self-organization into centrosymmetric pseudo-dimers in the structure of compound II. All HmDtc ligands coordinate in S,S'-anisobidentate mode to form four isomeric (in I) or structurally unique [Bi(HmDtc)3] molecules (in II), whose distorted polyhedra can be approximated by pentagonal pyramid or octahedron. Solvating DMSO molecules are retained in the structure II by C–H···O hydrogen bonds. The analysis of energy dispersive X-ray spectra allowed one to identify the residual matter obtained by thermolysis of the complexes as Bi2S3 with admixture of Bi0.
- Keywords
- соединения висмута(III) диалкилдитиокарбаматные комплексы супрамолекулярная самоорганизация вторичные взаимодействия термическое поведение
- Date of publication
- 17.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 12
References
- 1. Sivasekar S., Ramalingam K., Rizzoli C., Alexander N. // Inorg. Chim. Acta. 2014. V. 419. P. 82. https://doi.org/10.1016/j.ica.2014.04.042
- 2. Chauhan R., Chaturvedi J., Trivedi M. et al. // Inorg. Chim. Acta. 2015. V. 430. P. 168. https://doi.org/10.1016/j.ica.2015.03.007
- 3. Kun W.N., Mlowe S., Nyamen L.D. et al. // Polyhedron. 2018. V. 154. P. 173. https://doi.org/10.1016/j.poly.2018.07.055
- 4. Tamilvanan S., Gurumoorthy G., Thirumaran S., Ciattini S. // Polyhedron. 2017. V. 121. P. 70. https://doi.org/10.1016/j.poly.2016.09.038
- 5. Tamilvanan S., Gurumoorthy G., Thirumaran S., Ciattini S. // Polyhedron. 2017. V. 123. P. 111. https://doi.org/10.1016/j.poly.2016.10.026
- 6. Abdullah N.H., Zainal Z., Silong S. et al. // Thermochim. Acta. 2016. V. 632. P. 37. https://doi.org/10.1016/j.tca.2016.03.001
- 7. Li H., Lai C.S., Wu J. et al. // J. Inorg. Biochem. 2007. V. 101. № 5. P. 809. https://doi.org/10.1016/j.jinorgbio.2007.01.010
- 8. Ishak D.H.A., Ooi K.K., Ang K.-P. et al. // J. Inorg. Biochem. 2014. V. 130. P. 38. https://doi.org/10.1016/j.jinorgbio.2013.09.018
- 9. Sun R.-Z., Guo Y.-C., Liu W.-M. et al. // Chin. J. Struct. Chem. 2012. V. 31. № 5. P. 655.
- 10. Ferreira I.P., de Lima G.M., Paniago E.B. et al. // J. Coord. Chem. 2014. V. 67. № 6. P. 1097. https://doi.org/10.1080/00958972.2014.908188
- 11. Ozturk I.I., Banti C.N., Kourkoumelis N. et al. // Polyhedron. 2014. V. 67. P. 89. https://doi.org/10.1016/j.poly.2013.08.052
- 12. Adeyemi J.O., Onwudiwe D.C. // Molecules. 2020. V. 25. № 2. P. 305. https://doi.org/10.3390/molecules25020305
- 13. Chan P.F., Ang K.P., Hamid R.A. // Biometals. 2021. V. 34. № 2. P. 365. https://doi.org/10.1007/s10534-021-00286-0
- 14. Lai C.S., Tiekink E.R.T. // Z. Kristallogr. 2007. V. 222. № 10. P. 532. https://doi.org/10.1524/zkri.2007.222.10.532
- 15. Yin H.D., Li F., Wang D. // J. Coord. Chem. 2007. V. 60. № 11. P. 1133. https://doi.org/10.1080/00958970601008846
- 16. Baba I., Karimah K., Farina Y. et al. // Acta Crystallogr., Sect. E: Struct. 2002. V. 58. № 12. P. m756. https://doi.org/10.1107/S1600536802021256
- 17. Battaglia L.P., Corradi A.B. // J. Chem. Soc., Dalton Trans. 1986. № 8. P. 1513. https://doi.org/10.1039/DT9860001513
- 18. Иванов А.В., Егорова И.В., Иванов М.А. и др. // Докл. РАН. 2014. Т. 454. № 2. С. 190.
- 19. Gowda V., Sarma B., Laitinen R.S. et al. // Polyhedron. 2017. V. 129. P. 123. https://doi.org/10.1002/slct.202001692
- 20. Новикова Е.В., Заева А.С., Денисов Г.Л. и др. // Журн. неорган. химии. 2022. Т. 67. № 1. С. 103.
- 21. Бырько В.М. Дитиокарбаматы. М.: Наука, 1984. 341 с.
- 22. Sheldrick G.M. // Acta Crystallogr., Sect. A. 2015. V. 71. № 1. P. 3. https://doi.org/10.1107/S2053273314026370
- 23. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Crystallogr. 2009. V. 42. № 2. P. 339. https://doi.org/10.1107/S0021889808042726
- 24. Казицына Л.A., Куплетская Н.Б. Применение УФ-, ИК-, ЯМР- и масс-спектроскопии в органической химии. М.: Изд-во Моск. ун-та, 1979. 240 с.
- 25. Корнеева Е.В., Иванов А.В., Герасименко А.В. и др. // Журн. общ. химии. 2019. Т. 89. № 8. С. 1260.
- 26. Корнеева Е.В., Новикова Е.В., Лосева О.В. и др. // Коорд. химия. 2021. Т. 47. № 11. С. 707.
- 27. SpectraBase Compound ID=5Zceg8XzL6u John Wiley & Sons, Inc. SpectraBase; https://spectrabase.com/compound/5Zceg8XzL6u (дата обращения 09.02.2023).
- 28. SpectraBase Compound ID=DiJQuAXLpJE John Wiley & Sons, Inc. SpectraBase; https://spectrabase.com/compound/DiJQuAXLpJE (дата обращения 09.02.2023).
- 29. Cotton F.A., Francis R., Horrocks W.D. // J. Phys. Chem. 1960. V. 64. № 10. P. 1534. https://doi.org/10.1021/j100839a046
- 30. Тарасевич Б.Н. Основы ИК спектроскопии с преобразованием Фурье. Подготовка проб в ИК спектроскопии. M.: МГУ, 2012. 22 с.
- 31. Кукушкин Ю.Н. Химия координационных соединений. М.: Высш. шк., 1985. 455 с.
- 32. Bocian D.F., Pickett H.M., Rounds T.C., Strauss H.L. // J. Am. Chem. Soc. 1975. V. 97. № 4. P. 687. https://doi.org/10.1021/ja00837a001
- 33. Boessenkool I.K., Boeyens J.C.A. // J. Cryst. Mol. Struct. 1980. V. 10. № 1/2. P. 11. https://doi.org/10.1007/BF01209549
- 34. Alcock N.W. // Adv. Inorg. Chem. Radiochem. 1972. V. 15. № 1. P. 1. https://doi.org/10.1016/S0065-2792 (08)60016-3
- 35. Бацанов С.С. // Неорган. материалы. 2001. Т. 37. № 9. С. 1031. Batsanov S.S. // Inorg. Mater. 2001. V. 37. № 9. P. 871. https://doi.org/10.1023/A:1011625728803
- 36. Mantina M., Chamberlin A.C., Valero R. et al. // J. Phys. Chem. A. 2009. V. 113. № 19. P. 5806. https://doi.org/10.1021/jp8111556
- 37. Hu S.-Z., Zhou Z.-H., Robertson B.E. // Z. Kristallogr. 2009. V. 224. № 8. P. 375. https://doi.org/10.1524/zkri.2009.1158
- 38. Alvarez S. // Dalton Trans. 2013. V. 42. № 24. P. 8617. https://doi.org/10.1039/C3DT50599E
- 39. Bondi A. // J. Phys. Chem. 1964. V. 68. № 3. P. 441. https://doi.org/10.1021/j100785a001
- 40. Lin J.-C., Sharma R.C., Chang Y.A. // J. Phase Equilib. 1996. V. 17. № 2. P. 132. https://doi.org/10.1007/BF02665790
- 41. Ge Z.-H., Qin P., He D. et al. // ACS Appl. Mater. Interfaces. 2017. V. 9. № 5. P. 4828. https://doi.org/10.1021/acsami.6b14803
- 42. Zeynali H., Mousavi S.B., Hosseinpour-Mashkani S.M. // Mater. Lett. 2015. V. 144. P. 65. https://doi.org/10.1016/j.matlet.2015.01.023