RAS Chemistry & Material ScienceЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

Isomeric Molecular Forms of Pseudo-Binuclear Bismuth(III) Dithiocarbamate [Bi2{S2CN(CH2)6}6]: Preparation, Thermal Behavior, and Structural Effect of Its Solvation with DMSO, [Bi2{S2CN(CH2)6}6]⋅2(CH3)2SO

PII
10.31857/S0044457X23600548-1
DOI
10.31857/S0044457X23600548
Publication type
Status
Published
Authors
Volume/ Edition
Volume 68 / Issue number 10
Pages
1433-1446
Abstract
Bismuth(III) hexamethylenedithiocarbamate (HmDtc) [Bi2{S2CN(CH2)6}6] (I) and its solvated with dimethyl sulfoxide form [Bi2(S2CNHm)6]⋅2(CH3)2SO (II) have been obtained. The crystal structure of compound I shows an unusual alternation of two unsymmetrical isomeric pseudo-binuclear [Bi1/1B(HmDtc)3···Bi1A/1C(HmDtc)3] molecules, each of which involves two non-equivalent mononuclear moieties combined by secondary Bi···S bonds. The solvation of complex I leads to the structural unification of isomeric [Bi(HmDtc)3] molecules followed by their self-organization into centrosymmetric pseudo-dimers in the structure of compound II. All HmDtc ligands coordinate in S,S'-anisobidentate mode to form four isomeric (in I) or structurally unique [Bi(HmDtc)3] molecules (in II), whose distorted polyhedra can be approximated by pentagonal pyramid or octahedron. Solvating DMSO molecules are retained in the structure II by C–H···O hydrogen bonds. The analysis of energy dispersive X-ray spectra allowed one to identify the residual matter obtained by thermolysis of the complexes as Bi2S3 with admixture of Bi0.
Keywords
соединения висмута(III) диалкилдитиокарбаматные комплексы супрамолекулярная самоорганизация вторичные взаимодействия термическое поведение
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
12

References

  1. 1. Sivasekar S., Ramalingam K., Rizzoli C., Alexander N. // Inorg. Chim. Acta. 2014. V. 419. P. 82. https://doi.org/10.1016/j.ica.2014.04.042
  2. 2. Chauhan R., Chaturvedi J., Trivedi M. et al. // Inorg. Chim. Acta. 2015. V. 430. P. 168. https://doi.org/10.1016/j.ica.2015.03.007
  3. 3. Kun W.N., Mlowe S., Nyamen L.D. et al. // Polyhedron. 2018. V. 154. P. 173. https://doi.org/10.1016/j.poly.2018.07.055
  4. 4. Tamilvanan S., Gurumoorthy G., Thirumaran S., Ciattini S. // Polyhedron. 2017. V. 121. P. 70. https://doi.org/10.1016/j.poly.2016.09.038
  5. 5. Tamilvanan S., Gurumoorthy G., Thirumaran S., Ciattini S. // Polyhedron. 2017. V. 123. P. 111. https://doi.org/10.1016/j.poly.2016.10.026
  6. 6. Abdullah N.H., Zainal Z., Silong S. et al. // Thermochim. Acta. 2016. V. 632. P. 37. https://doi.org/10.1016/j.tca.2016.03.001
  7. 7. Li H., Lai C.S., Wu J. et al. // J. Inorg. Biochem. 2007. V. 101. № 5. P. 809. https://doi.org/10.1016/j.jinorgbio.2007.01.010
  8. 8. Ishak D.H.A., Ooi K.K., Ang K.-P. et al. // J. Inorg. Biochem. 2014. V. 130. P. 38. https://doi.org/10.1016/j.jinorgbio.2013.09.018
  9. 9. Sun R.-Z., Guo Y.-C., Liu W.-M. et al. // Chin. J. Struct. Chem. 2012. V. 31. № 5. P. 655.
  10. 10. Ferreira I.P., de Lima G.M., Paniago E.B. et al. // J. Coord. Chem. 2014. V. 67. № 6. P. 1097. https://doi.org/10.1080/00958972.2014.908188
  11. 11. Ozturk I.I., Banti C.N., Kourkoumelis N. et al. // Polyhedron. 2014. V. 67. P. 89. https://doi.org/10.1016/j.poly.2013.08.052
  12. 12. Adeyemi J.O., Onwudiwe D.C. // Molecules. 2020. V. 25. № 2. P. 305. https://doi.org/10.3390/molecules25020305
  13. 13. Chan P.F., Ang K.P., Hamid R.A. // Biometals. 2021. V. 34. № 2. P. 365. https://doi.org/10.1007/s10534-021-00286-0
  14. 14. Lai C.S., Tiekink E.R.T. // Z. Kristallogr. 2007. V. 222. № 10. P. 532. https://doi.org/10.1524/zkri.2007.222.10.532
  15. 15. Yin H.D., Li F., Wang D. // J. Coord. Chem. 2007. V. 60. № 11. P. 1133. https://doi.org/10.1080/00958970601008846
  16. 16. Baba I., Karimah K., Farina Y. et al. // Acta Crystallogr., Sect. E: Struct. 2002. V. 58. № 12. P. m756. https://doi.org/10.1107/S1600536802021256
  17. 17. Battaglia L.P., Corradi A.B. // J. Chem. Soc., Dalton Trans. 1986. № 8. P. 1513. https://doi.org/10.1039/DT9860001513
  18. 18. Иванов А.В., Егорова И.В., Иванов М.А. и др. // Докл. РАН. 2014. Т. 454. № 2. С. 190.
  19. 19. Gowda V., Sarma B., Laitinen R.S. et al. // Polyhedron. 2017. V. 129. P. 123. https://doi.org/10.1002/slct.202001692
  20. 20. Новикова Е.В., Заева А.С., Денисов Г.Л. и др. // Журн. неорган. химии. 2022. Т. 67. № 1. С. 103.
  21. 21. Бырько В.М. Дитиокарбаматы. М.: Наука, 1984. 341 с.
  22. 22. Sheldrick G.M. // Acta Crystallogr., Sect. A. 2015. V. 71. № 1. P. 3. https://doi.org/10.1107/S2053273314026370
  23. 23. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Crystallogr. 2009. V. 42. № 2. P. 339. https://doi.org/10.1107/S0021889808042726
  24. 24. Казицына Л.A., Куплетская Н.Б. Применение УФ-, ИК-, ЯМР- и масс-спектроскопии в органической химии. М.: Изд-во Моск. ун-та, 1979. 240 с.
  25. 25. Корнеева Е.В., Иванов А.В., Герасименко А.В. и др. // Журн. общ. химии. 2019. Т. 89. № 8. С. 1260.
  26. 26. Корнеева Е.В., Новикова Е.В., Лосева О.В. и др. // Коорд. химия. 2021. Т. 47. № 11. С. 707.
  27. 27. SpectraBase Compound ID=5Zceg8XzL6u John Wiley & Sons, Inc. SpectraBase; https://spectrabase.com/compound/5Zceg8XzL6u (дата обращения 09.02.2023).
  28. 28. SpectraBase Compound ID=DiJQuAXLpJE John Wiley & Sons, Inc. SpectraBase; https://spectrabase.com/compound/DiJQuAXLpJE (дата обращения 09.02.2023).
  29. 29. Cotton F.A., Francis R., Horrocks W.D. // J. Phys. Chem. 1960. V. 64. № 10. P. 1534. https://doi.org/10.1021/j100839a046
  30. 30. Тарасевич Б.Н. Основы ИК спектроскопии с преобразованием Фурье. Подготовка проб в ИК спектроскопии. M.: МГУ, 2012. 22 с.
  31. 31. Кукушкин Ю.Н. Химия координационных соединений. М.: Высш. шк., 1985. 455 с.
  32. 32. Bocian D.F., Pickett H.M., Rounds T.C., Strauss H.L. // J. Am. Chem. Soc. 1975. V. 97. № 4. P. 687. https://doi.org/10.1021/ja00837a001
  33. 33. Boessenkool I.K., Boeyens J.C.A. // J. Cryst. Mol. Struct. 1980. V. 10. № 1/2. P. 11. https://doi.org/10.1007/BF01209549
  34. 34. Alcock N.W. // Adv. Inorg. Chem. Radiochem. 1972. V. 15. № 1. P. 1. https://doi.org/10.1016/S0065-2792 (08)60016-3
  35. 35. Бацанов С.С. // Неорган. материалы. 2001. Т. 37. № 9. С. 1031. Batsanov S.S. // Inorg. Mater. 2001. V. 37. № 9. P. 871. https://doi.org/10.1023/A:1011625728803
  36. 36. Mantina M., Chamberlin A.C., Valero R. et al. // J. Phys. Chem. A. 2009. V. 113. № 19. P. 5806. https://doi.org/10.1021/jp8111556
  37. 37. Hu S.-Z., Zhou Z.-H., Robertson B.E. // Z. Kristallogr. 2009. V. 224. № 8. P. 375. https://doi.org/10.1524/zkri.2009.1158
  38. 38. Alvarez S. // Dalton Trans. 2013. V. 42. № 24. P. 8617. https://doi.org/10.1039/C3DT50599E
  39. 39. Bondi A. // J. Phys. Chem. 1964. V. 68. № 3. P. 441. https://doi.org/10.1021/j100785a001
  40. 40. Lin J.-C., Sharma R.C., Chang Y.A. // J. Phase Equilib. 1996. V. 17. № 2. P. 132. https://doi.org/10.1007/BF02665790
  41. 41. Ge Z.-H., Qin P., He D. et al. // ACS Appl. Mater. Interfaces. 2017. V. 9. № 5. P. 4828. https://doi.org/10.1021/acsami.6b14803
  42. 42. Zeynali H., Mousavi S.B., Hosseinpour-Mashkani S.M. // Mater. Lett. 2015. V. 144. P. 65. https://doi.org/10.1016/j.matlet.2015.01.023
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library