- PII
- 10.31857/S0044457X23600019-1
- DOI
- 10.31857/S0044457X23600019
- Publication type
- Status
- Published
- Authors
- Volume/ Edition
- Volume 68 / Issue number 5
- Pages
- 651-657
- Abstract
- The paper describes the thermodynamic modeling and experimental study of the synthesis of vanadium oxide films at various temperatures from the tetrakis(ethylmethylaminovanadium) V[NC3H8]4 precursor in the presence of oxygen in an argon atmosphere. The thermodynamic modeling was carried out using the calculation of chemical equilibria based on the minimization of the Gibbs energy of the system. In the experimental part of the paper, the films were synthesized by the atomic layer deposition procedure. The thermodynamic modeling and experimental results agree with each other and can be used to develop procedures for the synthesis of film coatings based on vanadium oxides.
- Keywords
- термодинамическое моделирование атомно-слоевое осаждение тонкие пленки диоксид ванадия пентаоксид ванадия
- Date of publication
- 01.05.2023
- Year of publication
- 2023
- Number of purchasers
- 0
- Views
- 49
References
- 1. Jager M.F., Ott C., Kraus P.M. et al. // Proc. Natl. Acad. Sci. 2017. V. 114. № 36. P. 9558. https://doi.org/10.1073/pnas.1707602114
- 2. Morin F.J. // Phys. Rev. Lett. 1959. V. 3. № 1. P. 34. https://doi.org/10.1103/PhysRevLett.3.34
- 3. Shao Z., Cao X., Luo H. et al. // NPG Asia Mater. 2018. V. 10. № 7. P. 581. https://doi.org/10.1038/s41427-018-0061-2
- 4. Liu K., Lee S., Yang S. et al. // Mater. Today. 2018. V. 21. № 8. P. 875. https://doi.org/10.1016/j.mattod.2018.03.029
- 5. Lu C., Lu Q., Gao M. et al. // Nanomaterials. 2021. V. 11. № 1. P. 114. https://doi.org/10.3390/nano11010114
- 6. Schlag H.J., Scherber W. // Thin Solid Films. 2000. V. 366. № 1–2. P. 28. https://doi.org/10.1016/S0040-6090 (00)00711-2
- 7. Kana Kana J.B., Ndjaka J.M., Vignaud G. et al. // Opt. Commun. 2011. V. 284. № 3. P. 807. https://doi.org/10.1016/j.optcom.2010.10.009
- 8. Sun J., Pribil G.K. // Appl. Surf. Sci. 2017. V. 421. P. 819. https://doi.org/10.1016/j.apsusc.2016.09.125
- 9. Briggs R.M., Pryce I.M., Atwater H.A. // Opt. Express. 2010. V. 18. № 11. P. 11192. https://doi.org/10.1364/oe.18.011192
- 10. Prinz V.Y., Mutilin S.V., Yakovkina L.V. et al. // Nanoscale. 2020. V. 12. № 5. P. 3443. https://doi.org/10.1039/C9NR08712E
- 11. Mutilin S.V., Prinz V.Y., Seleznev V.A. et al. // Appl. Phys. Lett. 2018. V. 113. № 4. P. 043101. https://doi.org/10.1063/1.5031075
- 12. Mutilin S.V., Prinz V.Y., Yakovkina L.V. et al. // CrystEngComm. 2021. V. 23. № 2. P. 443. https://doi.org/10.1039/D0CE01072C
- 13. You Zhou, Ramanathan S. // Proc. IEEE. 2015. V. 103. № 8. P. 1289. https://doi.org/10.1109/JPROC.2015.2431914
- 14. Yang Z., Ko C., Ramanathan S. // Annu. Rev. Mater. Res. 2011. V. 41. № 1. P. 337. https://doi.org/10.1146/annurev-matsci-062910-100347
- 15. Nakano M., Shibuya K., Ogawa N. et al. // Appl. Phys. Lett. 2013. V. 103. № 15. P. 153503. https://doi.org/10.1063/1.4824621
- 16. Kats M.A., Blanchard R., Zhang S. et al. // Phys. Rev. X. 2013. V. 3. № 4. P. 041004. https://doi.org/10.1103/PhysRevX.3.041004
- 17. Rios C., Hosseini P., Wright C.D. et al. // Adv. Mater. 2014. V. 26. № 9. P. 1372. https://doi.org/10.1002/adma.201304476
- 18. Faucheu J., Bourgeat-Lami E., Prevot V. // Adv. Eng. Mater. 2018. P. 1800438. https://doi.org/10.1002/adem.201800438
- 19. Ke Y., Wang S., Liu G. et al. // Small. 2018. V. 14. № 39. P. 1802025. https://doi.org/10.1002/smll.201802025
- 20. Liu T.-J.K., Kuhn K. CMOS and Beyond. Cambridge: Cambridge University Press, 2014. https://doi.org/10.1017/CBO9781107337886
- 21. Zhu H.-F., Du L.-H., Li J. et al. // Appl. Phys. Lett. 2018. V. 112. № 8. P. 081103. https://doi.org/10.1063/1.5020930
- 22. Ko C., Yang Z., Ramanathan S. // ACS Appl. Mater. Interfaces. 2011. V. 3. № 9. P. 3396. https://doi.org/10.1021/am2006299
- 23. Qazilbash M.M., Brehm M., Chae B.-G. et al. // Science. 2007. V. 318. № 5857. P. 1750. https://doi.org/10.1126/science.1150124
- 24. Zimmers A., Aigouy L., Mortier M. et al. // Phys. Rev. Lett. 2013. V. 110. № 5. P. 056601. https://doi.org/10.1103/PhysRevLett.110.056601
- 25. Chang Y.J., Yang J.S., Kim Y.S. et al. // Phys. Rev. B. 2007. V. 76. № 7. P. 075118. https://doi.org/10.1103/PhysRevB.76.075118
- 26. Qazilbash M.M., Tripathi A., Schafgans A.A. et al. // Phys. Rev. B. 2011. V. 83. № 16. P. 165108. https://doi.org/10.1103/PhysRevB.83.165108
- 27. Stroud D. // Phys. Rev. B. 1975. V. 12. № 8. P. 3368. https://doi.org/10.1103/PhysRevB.12.3368
- 28. Inomata N., Usuda T., Yamamoto Y. et al. // Sensors Actuators A Phys. 2022. V. 346. P. 113823. https://doi.org/10.1016/j.sna.2022.113823
- 29. Li G., Xie D., Zhong H. et al. // Nat. Commun. 2022. V. 13. № 1. P. 1729. https://doi.org/10.1038/s41467-022-29456-5
- 30. Yakovkina L.V., Mutilin S.V., Prinz V.Y. et al. // J. Mater. Sci. 2017. V. 52. № 7. P. 4061. https://doi.org/10.1007/s10853-016-0669-y
- 31. Zhang Y., Xiong W., Chen W. et al. // Nanomaterials. 2021. V. 11. № 2. P. 1. https://doi.org/10.3390/nano11020338
- 32. Xue X., Zhou Z., Peng B. et al. // RSC Adv. 2015. V. 5. № 97. P. 79249. https://doi.org/10.1039/C5RA13349A
- 33. Shi R., Shen N., Wang J. et al. // Appl. Phys. Rev. 2019. V. 6. № 1. https://doi.org/10.1063/1.5087864
- 34. Li J., An Z., Zhang W. et al. // Appl. Surf. Sci. 2020. V. 529. P. 147108. https://doi.org/10.1016/j.apsusc.2020.147108
- 35. Brahlek M., Zhang L., Lapano J. et al. // MRS Commun. 2017. V. 7. № 1. P. 27. https://doi.org/10.1557/mrc.2017.2
- 36. Prasadam V.P., Bahlawane N., Mattelaer F. et al. // Mater. Today Chem. 2019. V. 12. P. 396. https://doi.org/10.1016/j.mtchem.2019.03.004
- 37. Bai G., Niang K.M., Robertson J. // J. Vac. Sci. Technol. A. 2020. V. 38. № 5. P. 052402. https://doi.org/10.1116/6.0000353
- 38. Niang K.M., Bai G., Robertson J. // J. Vac. Sci. Technol. A. 2020. V. 38. № 4. P. 042401. https://doi.org/10.1116/6.0000152
- 39. Kozen A.C., Joress H., Currie M. et al. // J. Phys. Chem. C. 2017. V. 121. № 35. P. 19341. https://doi.org/10.1021/acs.jpcc.7b04682
- 40. Шестаков В.А., Косинова М.Л. // Изв. АН. Сер. хим. 2021. Т. 70. № 2. С. 283. https://doi.org/10.1007/s11172-021-3083-9
- 41. Шестаков В.А., Косинова М.Л. // Журн. неорг. химии. 2021. Т. 66. № 11. С. 1585. https://doi.org/10.31857/S0044457X21110155
- 42. Шестаков В.А., Косяков В.И., Косинова М.Л. // Журн. неорган. химии. 2020. Т. 65. № 6. С. 829.https://doi.org/10.31857/S0044457X20060215
- 43. Шестаков В.А., Яковкина Л.В., Кичай В.Н. // Журн. неорган. химии. 2022. Т. 67. № 12. С. 1746. https://doi.org/10.31857/S0044457X22600608
- 44. Merenkov I.S., Katsui H., Khomyakov M.N. et al. // J. Eur. Ceram. Soc. 2019. V. 39. № 16. P. 5123. https://doi.org/10.1016/j.jeurceramsoc.2019.08.006
- 45. Титов В.А., Косяков В.И., Кузнецов Ф.А. Проблемы электронного материаловедения. Новосибирск: Наука, 1986.
- 46. Kang Y.-B. // J. Eur. Ceram. Soc. 2012. V. 32. № 12. P. 3187. https://doi.org/10.1016/j.jeurceramsoc.2012.04.045
- 47. Barin I. Termodynamical Data of Pure Substances. N.Y., 1989.
- 48. Mahmoodinezhad A., Janowitz C., Naumann F. et al. // J. Vac. Sci. Technol. A. 2020. V. 38. № 2. P. 022404. https://doi.org/10.1116/1.5134800
- 49. Henkel K., Gargouri H., Gruska B. et al. // J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. 2013. V. 32. № 1. P. 01A107. https://doi.org/10.1116/1.4831897
- 50. Haeberle J., Henkel K., Gargouri H. et al. // Beilstein J. Nanotechnol. 2013. V. 4. № 1. P. 732. https://doi.org/10.3762/bjnano.4.83
- 51. Powder diffraction Files Inorganic Phases. International Centre for Diffraction Data, Pennsylvania, USA, 2010
- 52. Ureña-Begara F., Crunteanu A., Raskin J.P. // Appl. Surf. Sci. 2017. V. 403. P. 717. https://doi.org/10.1016/j.apsusc.2017.01.160