- Код статьи
- 10.31857/S0044457X22602012-1
- DOI
- 10.31857/S0044457X22602012
- Тип публикации
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том 68 / Номер выпуска 5
- Страницы
- 623-629
- Аннотация
- Проведено прогнозирование температуры плавления при атмосферном давлении двойных галогенидов состава ABHal3, ABHal4, A2BHal4, A2BHal5 и A3BHal6 (A и B – разные элементы, Hal = F, Cl, Br или I). Для расчетов была применена разработанная авторами система, основанная на использовании методов машинного обучения. Поиск компьютерных моделей был проведен на основе анализа информации об уже известных температурах плавления галогенидов. Для прогнозирования неизвестных значений температуры плавления галогенидов использовали только значения свойств элементов A, B и Hal. Было показано, что применение программ, основанных на методологии ансамблей алгоритмов машинного обучения, позволяет получить наиболее точные оценки температур плавления (средние абсолютные ошибки, определенные методом скользящего контроля, в пределах 29–52 K в зависимости от состава галогенидов и выбранного алгоритма). Коэффициент множественной детерминации для моделей, использованных для прогнозирования, не ниже 0.7.
- Ключевые слова
- галогенид температура плавления машинное обучение прогнозирование
- Дата публикации
- 17.09.2025
- Год выхода
- 2025
- Всего подписок
- 0
- Всего просмотров
- 10
Библиография
- 1. Lindemann F.A. // Phys. Z. 1910. Bd. 11. S. 609.
- 2. Ross M. // Phys. Rev. 1969. V. 184. № 1. P. 233. https://doi.org/10.1103/PhysRev.184.233
- 3. Stacey F.D., Irvine R.D. // Aust. J. Phys. 1977. V. 30. № 6. P. 631. https://doi.org/10.1071/PH770631
- 4. Boyer L.L. // Phase Transitions. 1985. V. 5. № 1. P. 1. https://doi.org/10.1080/01411598508219144
- 5. Owens F.J. // Phase Transitions. 2018. V. 91. № 5. P. 503. https://doi.org/10.1080/01411594.2018.1432052
- 6. Hong Q.-J., van de Walle A. // Phys. Rev. B: Condens. Matter. 2015. V. 92. № 2. P. 020104. https://doi.org/10.1103/PhysRevB.92.020104
- 7. Andrievskii R.A., Strel’nikova № S., Poltoratskii N.I. et al. // Soviet Powder Metallurgy and Metal Ceramics. 1967. V. 6. № 1. P. 65. https://doi.org/10.1007/BF00773385
- 8. Савицкий Е.М., Грибуля В.Б. // Структура и свойства жаропрочных металлических материалов. М.: Наука, 1973. С. 3.
- 9. Pedregosa F., Varoquaux G., Gramfort A. et al. // J. Machine Learning Res. 2011. V. 12 (Oct.). P. 2825.
- 10. Сайт проекта R: https://www.r-project.org/ (visited on 10.11.2022)
- 11. Dudarev V.A., Kiselyova N.N., Stolyarenko A.V. et al. // CEUR Workshop Proceedings (CEUR-WS.org), v. 2790. Supplementary Proceedings of the XXII International Conference on Data Analytics and Management in Data Intensive Domains (DAMDID/RCDL 2020). P. 89. http://ceur-ws.org/Vol-2790/paper09.pdf
- 12. Saad Y., Gao D., Ngo T. et al. // Phys. Rev. B.: Condens. Matter. 2012. V. 85. № 10. P. 104104. https://doi.org/10.1103/PhysRevB.85.104104
- 13. Pilania G., Gubernatis J.E., Lookman T. // Phys. Rev. B: Condens. Matter. 2015. V. 91. № 21. P. 214302. https://doi.org/10.1103/PhysRevB.91.214302
- 14. Zhang Z., Peng R., Chen N. // Mater. Sci. Eng., B. 1998. V. 54. № 3. P. 149. https://doi.org/10.1016/S0921-5107 (98)00157-3
- 15. Seko A., Maekawa T., Tsuda K., Tanaka I. // Phys. Rev. B: Condens. Matter. 2014. V. 89. № 5. P. 054303. https://doi.org/10.1103/PhysRevB.89.054303
- 16. Chen N., Li C., Yao S., Wang X. // J. Alloys Compd. 1996. V. 234. № 1–2. P. 130. https://doi.org/10.1016/0925-8388 (95)01963-4
- 17. Yan L.-M., Zhan Q.-B., Qin P., Chen N.-Y. // J. Rare Earths. 1994. V. 12. № 2. P. 102.
- 18. Seko A., Hayashi H., Nakayama K. et al. // Phys. Rev. B: Condens. Matter. 2017. V. 99. № 14. P. 144110. https://doi.org/10.1103/PhysRevB.95.144110
- 19. Gu T., Lu W., Bao X., Chen N. // Solid State Sci. 2006. V. 8. № 2. P. 129. https://doi.org/10.1016/j.solidstatesciences.2005.10.01
- 20. Киселева Н.Н. // Журн. неорган. химии. 2014. Т. 59. № 5. С. 665. https://doi.org/10.7868/S0044457X14050110
- 21. Киселева Н.Н., Столяренко А.В., Рязанов В.В. и др. // Журн. неорган. химии. 2014. Т. 59. № 12. С. 1709. https://doi.org/10.7868/S0044457X1412010
- 22. БД “Elements”: https://phase.imet-db.ru/elements (visited on 10.11.2022).
- 23. БД “Фaзы”: https://phase.imet-db.ru (visited on 10.11.2022).
- 24. Сенько О.В., Докукин А.А., Киселева Н.Н., Хомутов Н.Ю. // Доклады Академии наук. 2018. Т. 479. № 1. С. 11. https://doi.org/10.7868/S086956521801-0016
- 25. Журавлев Ю.И., Сенько О.В., Докукин А.А. и др. // Доклады Академии наук. 2021. Т. 499. С. 63. https://doi.org/10.31857/S2686954321040172
- 26. Ващенко Е.А., Витушко М.А., Дударев В.А. и др. // Информационные процессы. 2019. Т. 19. № 4. С. 415.
- 27. Киселева Н.Н., Дударев В.А., Столяренко А.В. и др. // Перспективные материалы. 2021. № 9. С. 1. https://doi.org/10.30791/1028-978X-2021-9-5-23
- 28. Kiselyova N.N., Stolyarenko A.V., Ryazanov V.V. et al. // Pattern Recognition and Image Analysis. 2011. V. 21. № 1. P. 88. https://doi.org/10.1134/S1054661811010081
- 29. Коршунов Б.Г., Сафонов В.В., Дробот Д.В. Фазовые равновесия в галогенидных системах. Справочник. М.: Металлургия, 1979. 182 с.
- 30. Коршунов Б.Г., Сафонов В.В. Галогениды. Диаграммы плавкости. Справочник. М.: Металлургия, 1991. 288 с.
- 31. Медведев В.А., Бергман Г.А., Васильев В.П. и др. Термические константы веществ / Под ред. Глушко В.П. Вып. IX (Be, Mg, Ca, Sr, Ba, Ra). М.: Изд-во АН СССР, 1979. 574 с.
- 32. Посыпайко В.И., Алексеева Е.А., Васина Н.А. и др. Диаграммы плавкости солевых систем. Справочник. М.: Металлургия, 1977. Ч. I. 416 с. Ч. II. 304 с.
- 33. Медведев В.А., Бергман Г.А., Васильев В.П. и др. Термические константы веществ. Вып. X (Li, Na, K, Rb, Cs, Fr). Ч. 2. Таблицы принятых значений: K, Rb, Cs, Fr. М.: Изд-во АН СССР, 1981. Ч. 1. 299 с. Ч. 2. 441 с.