RAS Chemistry & Material ScienceЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

Influence of the Structure of Taurine N-Derivatives on Their Complexing Properties

PII
10.31857/S0044457X22601791-1
DOI
10.31857/S0044457X22601791
Publication type
Status
Published
Authors
Volume/ Edition
Volume 68 / Issue number 4
Pages
537-545
Abstract
The paper presents data on the synthesis and study of the acid–base and complexing properties of N-hydroxyalkyl taurine derivatives. The ammonium group dissociation constants of the reagents were determined. The complex formation of taurine derivatives with transition and alkaline-earth metal ions was studied. Trends in the influence of the structure of ligands on the stability constants of their transition and alkaline-earth metal complexes were elucidated. In most cases, the studied ligands form most stable complexes with copper(II) ions. The decrease in amino group basicity in response to the incorporation of additional hydroxyl and/or sulfoethyl groups into a derivative leads to the differentiation of the ligand properties toward the studied ions. The data of this work can help expand the application range of the studied ligands, which can potentially be used as components of buffer solutions where there is the need to avoid or minimize complex formation in solution.
Keywords
комплексообразование pH-потенциометрия ионы металлов
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
11

References

  1. 1. Haque A., Ilmi R., Al-Busaidi I.J. et al. // Coord. Chem. Rev. 2017. V. 350. P. 320. https://doi.org/10.1016/j.ccr.2017.07.008
  2. 2. Jain A. // Coord. Chem. Rev. 2019. V. 401. P. 213067. https://doi.org/10.1016/j.ccr.2019.213067
  3. 3. Gridchin S.N., Nikol’skii V.M. // Russ. J. Physic. Chem. A. 2021. V. 95. № 10. P. 2174. https://doi.org/10.1134/S0036024421100095
  4. 4. Gridchin S.N., Nikol’skii V.M. // Russ. J. Physic. Chem. A. 2021. V. 95. № 1. P. 80. https://doi.org/10.1134/S0036024421010106
  5. 5. Gridchin S.N. // Russ. J. Physic. Chem. A. 2022. V. 96. № 4. P. 732. https://doi.org/10.1134/S0036024422040100
  6. 6. Chen C., Xia S., He J. et al. // Life. Sci. 2019. V. 231. P. 116584. https://doi.org/10.1016/j.lfs.2019.116584
  7. 7. Jakaria M., Azam S., Haque Md.E. et al. // Redox. Biol. 2019. V. 24. P. 101223. https://doi.org/10.1016/j.redox.2019.101223
  8. 8. Grygorenko O.O., Biitseva A.V., Zhersh S. // Tetrahedron. 2018. V. 74. № 13. P. 1355. https://doi.org/10.1016/j.tet.2018.01.033
  9. 9. Good N.E., Winget G.D., Winter W. et al. // Biochemistry. 1966. V. 5. № 2. P. 467. https://doi.org/10.1021/bi00866a011
  10. 10. Good N.E., Izawa S. // Methods in Enzymology 1972. V. 24. P. 53. https://doi.org/10.1016/0076-6879 (72)24054-X
  11. 11. Huang M., Song J., Lu B. et al. // Acta Pharm. Sin. B. 2014. V. 4. № 6. P. 447. https://doi.org/10.1016/j.apsb.2014.10.006
  12. 12. Wang T., Ma H., Padelford J.W. et al. // Electrochim. Acta. 2018. V. 282. P. 369. https://doi.org/10.1016/j.electacta.2018.06.067
  13. 13. Elemike E.E., Dare E.O., Samuel I.D. et al. // J. Appl. Res. Technol. 2016. V. 14. № 1. P. 38. https://doi.org/10.1016/j.jart.2015.12.001
  14. 14. Wang H., Meng X., Fan C. et al. // J. Mol. Struct. 2016. V. 1107. P. 25. https://doi.org/10.1016/j.molstruc.2015.11.035
  15. 15. Anwar Z.M., Azab H.A. // J. Chem. Eng. Data. 2001. V. 46. № 1. P. 34. https://doi.org/10.1021/je0000625
  16. 16. Azab H.A., Abou El-Nour K.M., Sorror S.H. // J. Chem. Eng. Data. 2007. V. 52. № 2. P. 381. https://doi.org/10.1021/je060319k
  17. 17. Kirillov A.M., Coelho J.A.S., Kirillova M.V. et al. // J. Inorg. Chem. 2010. V. 49. № 14. P. 6390. https://doi.org/10.1021/ic1007999
  18. 18. Kirillova M.V., Kirillov A.M., Martins A.N.C. et al. // J. Inorg. Chem. 2012. V. 51. № 9. P. 5224. https://doi.org/10.1021/ic300123d
  19. 19. Petrova Yu.S., Neudachina L.K. // Russ. J. Inorg. Chem. 2013. V. 58. № 5. P. 617. https://doi.org/10.1134/S0036023613050173
  20. 20. EL-Gahami M.A., Al-Bogami A.S., Albishri H.M. // J. Mol. Liq. 2014. V. 193. P. 45. https://doi.org/10.1016/j.molliq.2013.12.016
  21. 21. Taha M., Gupta B.S., Lee M.-J. // J. Chem. Eng. Data. 2011. V. 56. № 9. P. 3541. https://doi.org/10.1021/je200345a
  22. 22. Sokołowska M., Bal W. // J. Inorg. Biochem. 2005. V. 99. № 8. P. 1653. https://doi.org/10.1016/j.jinorgbio.2005.05.007
  23. 23. Pope J.M., Stevens P.R., Angotti M.T. et al. // Anal. Biochem. 1980. V. 103. № 1. P. 214. https://doi.org/10.1016/0003-2697 (80)90258-4
  24. 24. Taha M., Saqr R.A., Ahmed A.T. // J. Chem. Thermodyn. 2007. V. 39. № 2. P. 304. https://doi.org/10.1016/j.jct.2006.06.012
  25. 25. Zawisza I., Rózga M., Poznański J. et al. // J. Inorg. Biochem. 2013. V. 129. P. 58. https://doi.org/10.1016/j.jinorgbio.2013.08.012
  26. 26. Zemlyakova E.O., Pestov A.V., Slepukhin P.A. et al. // Russ. J. Coord. Chem. 2018. V. 44. № 11. P. 667. https://doi.org/10.1134/S107032841811009X
  27. 27. Solov’ev V.P., Baulin V.E., Strakhova N.N. et al. // J. Chem. Soc., Perkin Trans. 1998. № 6. P. 1489. https://doi.org/10.1039/a708245b
  28. 28. Zharkov G.P., Filimonova O.V., Petrova Yu.S. et al. // Russ. Chem. Bul. 2022. V. 71. № 1. P. 152. https://doi.org/10.1007/s11172-022-3389-2
  29. 29. Умланд Ф., Янсен А., Тириг Д. и др. // Комплексные соединения в аналитической химии. М.: Мир, 1975.
  30. 30. Jiang Y.-M., Cai J.-H., Liu Z.-M. et al. // Acta Crystallogr Sect. E. Struct. Rep. Online. 2005. V. 61. № 5. P. M878. https://doi.org/10.1107/S1600536805010846
  31. 31. Pearson R.G. // J. Am. Chem. Soc. 1963. V. 85. № 22. P. 3533. https://doi.org/10.1021/ja00905a001
  32. 32. Irving H., Williams R.J.P. // J. Chem. Soc. 1953. P. 3192. https://doi.org/10.1039/jr9530003192
  33. 33. Kotov A.V. // J. Anal. Chem. 1988. V. 43. № 5. P. 937.
  34. 34. Nakon R., Krishnamoorthy C.R. // Science. 1983. V. 221. № 4612. P. 749. https://doi.org/10.1126/science.6879173
  35. 35. Wyrzykowski D., Pilarski B., Jacewicz D. et al. // J. Therm. Anal. Calorim. 2013. V. 111. № 3. P. 1829. https://doi.org/10.1007/s10973-012-2593-y
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library