RAS Chemistry & Material ScienceЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

A New Method for the Synthesis of Layered Europium Hydroxide Using Propylene Oxide as the Precipitating Agent

PII
10.31857/S0044457X22601626-1
DOI
10.31857/S0044457X22601626
Publication type
Status
Published
Authors
Volume/ Edition
Volume 68 / Issue number 1
Pages
47-55
Abstract
A new method for the synthesis of layered europium basic chloride in up to 90% yield was developed. The method is based on hydrolysis of europium chloride in the presence of propylene oxide. The effect of reaction temperature on the yield and composition of the products of europium chloride hydrolysis in the presence of propylene oxide was analyzed. The obtained layered europium basic chloride had pronounced anion exchange properties. The possibility of intercalation of the isonicotinate anion into a layered rare earth hydroxide was demonstrated for the first time. The intercalation of the benzoate or isonicotinate anions into layered europium hydroxide led to luminescence sensitization and decrease in the Eu3+ local symmetry.
Keywords
cлоистые гидроксиды РЗЭ гомогенное осаждение эпоксиды анионный обмен люминесценция
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
13

References

  1. 1. Gándara F., Perles J., Snejko N. et al. // Angew. Chem. – Int. Ed. 2006. V. 45. № 47. P. 7998. https://doi.org/10.1002/anie.200602502
  2. 2. Liang J., Ma R., Sasaki T. // Photofunctional Layered Materials. 2015. https://doi.org/10.1007/978-3-319-16991-0_2
  3. 3. Wu L., Gao C., Li Z. et al. // J. Mater. Chem. C. 2017. V. 5. № 21. P. 5207. https://doi.org/10.1039/c7tc01246b
  4. 4. Wu L., Chen G., Li Z. // Small. 2017. V. 13. № 23. P. 1. https://doi.org/10.1002/smll.201604070
  5. 5. Liu L., Yu M., Zhang J. et al. // J. Mater. Chem. C. 2015. V. 3. № 10. P. 2326. https://doi.org/10.1039/c4tc02760d
  6. 6. Shen T., Zhang Y., Liu W. et al. // J. Mater. Chem. C. 2015. V. 3. № 8. P. 1807. https://doi.org/10.1039/c4tc02583k
  7. 7. Lee B. Il, Jeong H., Byeon S.H. // Chem. Commun. 2013. V. 49. № 97. P. 11397. https://doi.org/10.1039/c3cc46609d
  8. 8. Steblevskaya N.I., Belobeletskaya M.V., Yarovaya T.P. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 4. P. 415. https://doi.org/10.1134/S0036023622040180
  9. 9. Xiang Y., Yu X.F., He D.F. et al. // Adv. Funct. Mater. 2011. V. 21. № 22. P. 4388. https://doi.org/10.1002/adfm.201101808
  10. 10. Lee B. Il, Lee K.S., Lee J.H. et al. // Dalton Trans. 2009. № 14. P. 2490. https://doi.org/10.1039/b823172a
  11. 11. Yoon Y.S., Lee B.L., Lee K.S. et al. // Adv. Funct. Mater. 2009. V. 19. № 21. P. 3375. https://doi.org/10.1002/adfm.200901051
  12. 12. Yoon Y.S., Lee B. Il, Lee K.S. et al. // Chem. Commun. 2010. V. 46. № 21. P. 3654. https://doi.org/10.1039/b927570c
  13. 13. Geng F., Xin H., Matsushita Y. et al. // Chem. – A Eur. J. 2008. V. 14. № 30. P. 9255. https://doi.org/10.1002/chem.200800127
  14. 14. Yapryntsev A.D., Baranchikov A.E., Ivanov V.K. // Russ. Chem. Rev. 2020. V. 89. № 6. P. 629. https://doi.org/10.1070/rcr4920
  15. 15. Xu Y., Goyanes A., Wang Y. et al. // Dalton Trans. 2018. V. 47. № 9. P. 3166. https://doi.org/10.1039/c7dt03729e
  16. 16. Frolova E.A., Kondakov D.F., Yapryntsev A.D. et al. // Russ. J. Inorg. Chem. 2015. V. 60. № 3. P. 259. https://doi.org/10.1134/S0036023615030043
  17. 17. Hindocha S.A., McIntyre L.J., Fogg A.M. // J. Solid State Chem. 2009. V. 182. № 5. P. 1070. https://doi.org/10.1016/j.jssc.2009.01.039
  18. 18. Willard H.H., Tang N.K. // J. Am. Chem. Soc. 1937. V. 59. № 7. P. 1190. https://doi.org/10.1021/ja01286a010
  19. 19. Liang J., Ma R., Sasaki T. // Dalton Trans. 2014. V. 43. № 27. P. 10355. https://doi.org/10.1039/c4dt00425f
  20. 20. Dolgopolova E.A., Ivanova O.S., Sharikov F.Y. et al. // Russ. J. Inorg. Chem. 2012. V. 57. № 10. P. 1303. https://doi.org/10.1134/S003602361210004X
  21. 21. Yapryntsev A.D., Baranchikov A.E., Zabolotskaya A.V. et al. // Russ. J. Inorg. Chem. 2014. V. 59. № 12. P. 1383. https://doi.org/10.1134/S0036023614120286
  22. 22. Rodina A.A., Yapryntsev A.D., Churakov A.V. et al. // Russ. J. Inorg. Chem. 2021. V. 66. № 2. P. 125. https://doi.org/10.1134/S0036023621020169
  23. 23. Yapryntsev A.D., Skogareva L.S., Gol’dt A.E. et al. // Russ. J. Inorg. Chem. 2015. V. 60. № 9. P. 1027. https://doi.org/10.1134/S0036023615090211
  24. 24. Geng F., Matsushita Y., Ma R. et al. // Inorg. Chem. 2009. V. 48. № 14. P. 6724. https://doi.org/10.1021/ic900669p
  25. 25. Rao M.M., Reddy B.R., Jayalakshmi M. et al. // Mater. Res. Bull. 2005. V. 40. № 2. P. 347. https://doi.org/10.1016/j.materresbull.2004.10.007
  26. 26. Bann B., Miller S.A. // Chem. Rev. 1958. V. 58. № 1. P. 131. https://doi.org/10.1021/cr50019a004
  27. 27. Sharipov K.B., Yapryntsev A.D., Baranchikov A.E. et al. // Russ. J. Inorg. Chem. 2017. V. 62. № 2. P. 139. https://doi.org/10.1134/S0036023617020164
  28. 28. Cui H., Zayat M., Levy D. // J. Sol-Gel Sci. Technol. 2005. V. 35. № 3. P. 175. https://doi.org/10.1007/s10971-005-4165-0
  29. 29. Gash A.E., Tillotson T.M., Satcher J.H. et al. // J. Non. Cryst. Solids. 2001. V. 285. № 1–3. P. 22. https://doi.org/10.1016/S0022-3093 (01)00427-6
  30. 30. Gash A.E., Satcher J.H., Simpson R.L. // Chem. Mater. 2003. V. 15. № 17. P. 3268. https://doi.org/10.1021/cm034211p
  31. 31. Wei T.Y., Chen C.H., Chang K.H. et al. // Chem. Mater. 2009. V. 21. № 14. P. 3228. https://doi.org/10.1021/cm9007365
  32. 32. Cheng W., Rechberger F., Niederberger M. // ACS Nano. 2016. V. 10. № 2. P. 2467. https://doi.org/10.1021/acsnano.5b07301
  33. 33. Eid J., Pierre A.C., Baret G. // J. Non. Cryst. Solids. 2005. V. 351. № 3. P. 218. https://doi.org/10.1016/j.jnoncrysol.2004.11.020
  34. 34. Clapsaddle B.J., Neumann B., Wittstock A. et al. // J. Sol-Gel Sci. Technol. 2012. V. 64. № 2. P. 381. https://doi.org/10.1007/s10971-012-2868-6
  35. 35. Leventis N., Vassilaras P., Fabrizio E.F. et al. // J. Mater. Chem. 2007. V. 17. № 15. P. 1502. https://doi.org/10.1039/b612625a
  36. 36. Oestreicher V., Jobbágy M. // Langmuir. 2013. V. 29. № 39. P. 12104. https://doi.org/10.1021/la402260m
  37. 37. Oestreicher V., Fábregas I., Jobbágy M. // J. Phys. Chem. C. 2014. V. 118. № 51. P. 30274. https://doi.org/10.1021/jp510341q
  38. 38. Oestreicher V., Jobbágy M. // Chem. – A Eur. J. 2019. V. 25. № 54. P. 12611. https://doi.org/10.1002/chem.201902627
  39. 39. Du A., Zhou B., Zhang Z. et al. // Materials (Basel). 2013. V. 6. № 3. P. 941. https://doi.org/10.3390/ma6030941
  40. 40. Fritz J.S., Oliver R.T., Pietrzyk D.J. // Anal. Chem. 1958. V. 30. № 6. P. 1111. https://doi.org/10.1021/ac60138a032
  41. 41. Long F.A., Pritchard J.G. // J. Am. Chem. Soc. 1956. V. 78. № 12. P. 2663. https://doi.org/10.1021/ja01593a001
  42. 42. Sakuma K., Fujihara S. // J. Ceram. Process. Res. 2013. V. 14. P. 26. https://www.applc.keio.ac.jp/~shinobu/150.pdf
  43. 43. Yapryntsev A., Abdusatorov B., Yakushev I. et al. // Dalton Trans. 2019. V. 48. № 18. P. 6111. https://doi.org/10.1039/c9dt00390h
  44. 44. Chernyshova A.V., Nikolaev A.A., Kolokolov F.A. et al. // Russ. J. Gen. Chem. 2021. V. 91. № 6. P. 1063. https://doi.org/10.1134/S1070363221060128
  45. 45. Poudret L., Prior T.J., McIntyre L.J. et al. // Chem. Mater. 2008. V. 20. № 24. P. 7447. https://doi.org/10.1021/cm802301a
  46. 46. Kirchhoefer R.D. // J. AOAC Int. 1994. V. 77. № 3. P. 587. https://doi.org/10.1093/jaoac/77.3.587
  47. 47. Su F., Liu C., Yang Y. et al. // Mater. Res. Bull. 2017. V. 88. P. 301. https://doi.org/10.1016/j.materresbull.2017.01.008
  48. 48. Sun Y., Chu N., Gu Q. et al. // Eur. J. Inorg. Chem. 2013. № 1. P. 32. https://doi.org/10.1002/ejic.201201048
  49. 49. Utochnikova V.V., Kuzmina N.P. // Russ. J. Coord. Chem. 2016. V. 42. № 10. P. 679. https://doi.org/10.1134/S1070328416090074
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library