RAS Chemistry & Material ScienceЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

Effect of Substituent Position on Saturated Vapor Pressure of Tetrafluorosubstituted Zinc Phthalocyanines

PII
10.31857/S0044457X22601614-1
DOI
10.31857/S0044457X22601614
Publication type
Status
Published
Authors
Volume/ Edition
Volume 68 / Issue number 2
Pages
181-190
Abstract
This work is devoted to the study of the effect of the position of fluorine substituents in the molecules of tetrafluorosubstituted zinc phthalocyanines on their saturated vapor pressure. For this purpose, the temperature dependence of the saturated vapor pressure of zinc phthalocyanines with fluorine substituents in the peripheral (ZnPcF4-p) and non-peripheral (ZnPcF4-np) positions of the phthalocyanine ring has been studied by the Knudsen method with mass spectrometric recording of the composition of the gas phase and the thermodynamic parameters of vaporization were calculated. The data obtained for ZnPcF4-p and ZnPcF4-np with unsubstituted and hexadecafluorosubstituted zinc phthalocyanines are compared in terms of analysis of intermolecular interactions in the crystals of these compounds. It has been shown that tetrafluorosubstituted phthalocyanines have a higher vapor pressure than their unsubstituted (ZnPc) and hexadecafluorosubstituted (ZnPcF16) derivatives. In this case, the enthalpy of sublimation increases in the series ZnPcF4-p < ZnPcF4-np < ZnPc < ZnPcF16.
Keywords
фталоцианин цинка фторзамещенный фталоцианин давление насыщенного пара энтальпия сублимации межмолекулярные взаимодействия
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
14

References

  1. 1. Wang H., Wu Q., Cheng L. et al. // Energy Storage Mater. 2022. V. 52. P. 495.https://doi.org/10.1016/J.ENSM.2022.08.022
  2. 2. Kumar A., Kumar Vashistha V., Kumar Das D. // Coord. Chem. Rev. 2021. V. 431. P. 213678. https://doi.org/10.1016/J.CCR.2020.213678
  3. 3. Nyokong T. // Coord. Chem. Rev. 2007. V. 251. № 13–14 Spec. Iss. P. 1707. https://doi.org/10.1016/j.ccr.2006.11.011
  4. 4. Gorbunova Y.G., Martynov A.G., Birin K.P. et al. // Russ. J. Inorg. Chem. 2021. V. 66. № 2. P. 202. https://doi.org/10.1134/S0036023621020091
  5. 5. Jiang H., Hu P., Ye J. et al. // Adv. Mater. 2017. V. 29. № 10. P. 1605053. https://doi.org/10.1002/adma.201605053
  6. 6. Brinkmann H., Kelting C., Makarov S. et al. // Phys. Status Solidi: Appl. Mater. Sci. 2008. V. 205. № 3. P. 409. https://doi.org/10.1002/pssa.200723391
  7. 7. Gupta H., Mahajan A., Bedi R.K. // Indian J. Pure Appl. Phys. 2008. V. 46. № 6. P. 435.
  8. 8. Raveendra Kiran M., Ulla H., Satyanarayan M.N. et al. // Opt. Mater. (Amst). 2019. V. 96. P. 109348. https://doi.org/10.1016/j.optmat.2019.109348
  9. 9. Ilgün C., Sevim A.M., Çakar S. et al. // Sol. Energy. 2021. V. 218. P. 169. https://doi.org/10.1016/J.SOLENER.2021.02.042
  10. 10. Acikbas Y., Erdogan M., Capan R. et al. // Optik (Stuttg). 2021. V. 245. P. 167661. https://doi.org/10.1016/j.ijleo.2021.167661
  11. 11. Bengasi G., Meunier-Prest R., Baba K. et al. // Adv. Electron. Mater. 2020. V. 6. № 12. P. 1. https://doi.org/10.1002/aelm.202000812
  12. 12. Klyamer D., Bonegardt D., Krasnov P. et al. // Thin Solid Films. 2022. V. 754. P. 139301. https://doi.org/10.1016/J.TSF.2022.139301
  13. 13. Curry J., W. Shaw Jr. R. // J. Phys. Chem. 1965. V. 69. № 1. P. 344. https://doi.org/10.1021/j100885a505
  14. 14. Bonderman P.D., Cater D.E., Bennett E.W. // J. Chem. Eng. Data. 2002. V. 15. № 3. P. 396. https://doi.org/10.1021/je60046a004
  15. 15. Yase K., Takahashi Y., NorihikoArakato et al. // Jpn. J. Appl. Phys. 1995. V. 34. P. 636. https://doi.org/10.1143/JJAP.34.636
  16. 16. Шаулов Ю.Х., Лопаткина И.Л., Кирюхин И.А. et al. // Журн. физ. химии. 1975. Т. 49. № 1. С. 252.
  17. 17. Шаулов Ю.Х., Приселков Ю.А., Лопаткина И.Л., Маркова И.Я. // Журн. физ. химии. 1972. Т. 46. № 4. С. 857.
  18. 18. Semyannikov P.P., Basova T.V., Grankin V.M. et al. // J. Porphyr. Phthalocyanines. 2000. V. 4. № 3. P. 271. https://doi.org/10.1002/ (SICI)1099-1409(200004/0-5)4:33.3.CO;2-W
  19. 19. Plyashkevich V., Basova T., Semyannikov P. et al. // Thermochim. Acta. 2010. V. 501. № 1–2. P. 108. https://doi.org/10.1016/J.TCA.2010.01.019
  20. 20. Kol’tsov E., Basova T., Semyannikov P. et al. // Mater. Chem. Phys. 2004. V. 86. № 1. P. 222. https://doi.org/10.1016/j.matchemphys.2004.03.007
  21. 21. Semyannikov P., Basova T., Trubin S. et al. // J. Porphyr. Phthalocyanines. 2006. V. 10. № 8. P. 1034. https://doi.org/10.1142/S1088424606000387
  22. 22. Basova T., Semyannikov P., Plyashkevich V. et al. // Crit. Rev. Solid State Mater. Sci. 2009. V. 34. № 3–4. P. 180. https://doi.org/10.1080/10408430903245377
  23. 23. Семянников П.П., Басова Т.В., Трубин С.В. и др. // Журн. физ. химии. 2008. Т. 82. № 2. С. 221.
  24. 24. Басова Т.В., Семянников П.П., Игуменов И.К. // Давление насыщенного пара фталоцианинов. СПб., 2007. С. 136.
  25. 25. Klyamer D.D., Sukhikh A.S., Trubin S.V. et al. // Cryst. Growth & Des. 2020. V. 20. № 2. P. 1016. https://doi.org/10.1021/acs.cgd.9b01350
  26. 26. Erdoǧmus A., Nyokong T. // J. Mol. Struct. 2010. V. 977. № 1–3. P. 26. https://doi.org/10.1016/J.MOLSTRUC.2010.04.048
  27. 27. Гранкин В.М., Семянников П.П. // Приборы и техника эксперимента 1991. Т. 4. С. 129.
  28. 28. Lopatin S.I., Shugurov S.M., Tyurnina Z.G. et al. // Glas. Phys. Chem. 2021. V. 47. № 1. P. 38. https://doi.org/10.1134/S1087659621010077
  29. 29. Spackman P.R., Turner M.J., McKinnon J.J. et al. // J. Appl. Crystallogr. 2021. V. 54. P. 1006. https://doi.org/10.1107/S1600576721002910
  30. 30. Mackenzie C.F., Spackman P.R., Jayatilaka D. et al. // IUCrJ. 2017. V. 4. P. 575. https://doi.org/10.1107/S205225251700848X
  31. 31. Scheidt W.R., Dow W. // J. Am. Chem. Soc. 1977. V. 99. № 4. P. 1101. https://doi.org/10.1021/ja00446a021
  32. 32. Bonegardt D., Klyamer D., Sukhikh A. et al. // 2021. V. 9. № 6. P. 137. https://doi.org/10.3390/chemosensors9060137
  33. 33. Klyamer D.D., Sukhikh A.S., Gromilov S.A. et al. // Macroheterocycles. 2018. V. 11. № 3. P. 304. https://doi.org/10.6060/mhc180794b
  34. 34. Jiang H., Ye J., Hu P. et al. // Sci. Rep. 2014. V. 4. P. 1. https://doi.org/10.1038/srep07573
  35. 35. Erk P. // CCDC 112723: Experimental Crystal Structure Determination. 2004. https://doi.org/10.5517/cc3s97d
  36. 36. Ballirano P., Caminiti R., Ercolani C. et al. // J. Am. Chem. Soc. 1998. V. 120. № 49. P. 12798. https://doi.org/10.1021/ja973815p
  37. 37. Pugachev A.D., Tkachev V.V., Aldoshin S.M. et al. // Russ. J. Gen. Chem. 2021. V. 91. № 7. P. 1297. https://doi.org/10.1134/S1070363221070069
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library