ОХНМЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

Термохимические исследования соединений на основе оксидов висмута, диспрозия, самария, ниобия

Код статьи
10.31857/S0044457X2260150X-1
DOI
10.31857/S0044457X2260150X
Тип публикации
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 68 / Номер выпуска 2
Страницы
229-233
Аннотация
Методом твердофазного синтеза получены керамические образцы Bi1.4Dy0.6O3 и Bi3Nb0.2Sm0.8O6.2. Показано, что соединения имеют кубическую структуру (пр. гр. Fm3m). Методом растворной калориметрии определены стандартные энтальпии образования, рассчитаны энтальпии решетки. Энтальпия решетки соединений Bi3Nb0.2R0.8O6.2 уменьшается по абсолютной величине при замене эрбия на самарий, что связано с увеличением радиуса редкоземельного элемента от эрбия к самарию. Установлено, что энтальпия решетки Bi1.4Dy0.6O3 больше по абсолютной величине, чем энтальпия решетки Bi1.2Gd0.8O3.
Ключевые слова
керамические материалы оксиды редкоземельных металлов энтальпия образования энтальпия решетки
Дата публикации
17.09.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
10

Библиография

  1. 1. Punn R., Feteira A.M., Sinclair D.C. et al. // J. Am. Chem. Soc. 2006. V. 128. P. 15386. https://doi.org/10.1021/ja065961d
  2. 2. Lomanova N.A. // Russ. J. Inorg. Chem. 2022. V. 67. P. 741. https://doi.org/10.1134/S0036023622060146
  3. 3. Buyanova E.S., Emel’yanova Yu.V., Morozova M.V. et al. // Russ. J. Inorg. Chem. 2018. V. 63. P. 1297. https://doi.org/10.1134/S0036023618100042
  4. 4. Drache M., Roussel P., Wignacourt J.P. // Chem. Rev. 2007. V. 107. P. 80. https://doi.org/10.1021/cr050977s
  5. 5. Proskurina O.V., Sokolova A.N., Sirotkin A.A. et al. // Russ. J. Inorg. Chem. 2021. V. 66. P. 163. https://doi.org/10.1134/S0036023621020157
  6. 6. Dmitriev A.V., Vladimirov E.V., Kellerman D.G. et al. // J. Electron. Mater. 2019. V. 48. P. 4959. https://doi.org/10.1007/s11664-019-07227-1
  7. 7. Elovikov D.P., Tomkovich M.V., Levin A.A. et al. // Russ. J. Inorg. Chem. 2022. V. 67. P. 850. https://doi.org/10.1134/S0036023622060067
  8. 8. Lomakin M.S., Proskurina O.V., Levin A.A. et al. // Russ. J. Inorg. Chem. 2022. V. 67. P. 820. https://doi.org/10.1134/S0036023622060134
  9. 9. Borowska–Centhowska A., Liu X., Krynski M. et al. // RSC Advances. 2019. V. 9. P. 9640. https://doi.org/10.1039/c9ra01233h
  10. 10. Ivanov S.A., Stash A.I., Bush A.A. et al. // Russ. J. Inorg. Chem. 2022. V. 67. P. 588. https://doi.org/10.1134/S0036023622050096
  11. 11. Hervoches C.H., Greaves C. // J. Mater. Chem. 2010. V. 20. P. 6759. https://doi.org/10.1039/c0jm01385d
  12. 12. Dergacheva P.E., Kulbakin I.V., Ashmarin A.A. et al. // Russ. J. Inorg. Chem. 2021. V. 66. P. 1229. https://doi.org/10.1134/S0036023621080040
  13. 13. Novikov A.A., Belova E.V., Uspenskaya I.A. // J. Chem. Eng. Data. 2019. V. 64. P. 4230. https://doi.org/10.1021/acs.jced.9b00292
  14. 14. Kosova D.A., Druzhinina A.I., Tiflova L.A. et al. // J. Chem. Thermodyn. 2018. V. 118. P. 206. https://doi.org/10.1016/j.jct.2017.11.016
  15. 15. Shelyug A., Navrotsky A. // ACS Earth Space Chem. 2021. V. 5. P. 703. https://doi.org/10.1021/acsearthspacechem.0c00199
  16. 16. Matskevich N.I., Shlegel V.N., Sednev A.L. et al. // J. Chem. Thermodyn. 2020. V. 143. P. 106059. https://doi.org/10.1016/j.jct.2020.106059
  17. 17. Matskevich N.I., Chuprova M.V., Punn R. et al. // Thermochim. Acta. 2007. V. 459. P. 125. https://doi.org/10.1016/j.tca.2007.03.015
  18. 18. Matskevich N., Wolf T. // Thermochim. Acta. 2007. V. 467. P. 113. https://doi.org/10.1016/j.tca.2007.10.013
  19. 19. Kilday M.V. // J. Res. Nat. Bur. Stand. 1980. V. 85. P. 467.
  20. 20. Morss L.R. // Chem. Rev. 1976. V. 76. P. 827. https://doi.org/10.1021/cr60304a007
  21. 21. Glushko V.P. Termicheskie Konstanty Veshchestv (Thermal Constants of Substances). M.: VINITI, 1965–1982. № 1–10.
  22. 22. Matskevich N.I., Semerikova A.N., Samoshkin D.A. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 11.
  23. 23. Shannon R.D. // Acta Crystallogr. 1976. V. A32. P. 751. https://doi.org/10.1107/S0567739476001551
  24. 24. Hennig C., Oppermann H. // Z. Naturforsch. B. 1997. V. 52. № 12. P. 1517. https://doi.org/10.1515/znb-1997-1213
  25. 25. Schmidt M., Oppermann H., Hennig C. et al. // Z. Anorg. Allg. Chem. 2000. V. 626. № 1. P. 125. https://doi.org/10.1002/ (sici)1521-3749(200001)626:1-%3c125::aid-zaac125%3e3.0.co;2-s
  26. 26. Matskevich N.I., Semerikova A.N., Gelfond N.V. et al. // Russ. J. Inorg. Chem. 2020. V. 65. P. 743. https://doi.org/10.1134/S0036023620050162
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека