RAS Chemistry & Material ScienceЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

Synthesis, Structure, and Thermal Properties of Scandium(III) and Iron(III) Complexes with 3-Methyl-2,4-Pentanedione as Precursors for Chemical Gas-Phase Processes

PII
10.31857/S0044457X22601444-1
DOI
10.31857/S0044457X22601444
Publication type
Status
Published
Authors
Volume/ Edition
Volume 68 / Issue number 2
Pages
221-228
Abstract
Complexes Sc(Meacac)3 and Fe(Meacac)3 (Meacac is 3-methyl-2,4-pentanedionate anion) have been synthesized, and their crystal structures have been first determined by X-ray diffraction. The volatility and thermal stability of the obtained compounds have been studied. The temperature, enthalpy, and entropy of melting of the complexes have been determined by differential scanning calorimetry. The flow method has been used to obtain the temperature dependence of the saturated vapor pressure of Sc(Meacac)3 in the range 414–472 K, from which the thermodynamic characteristics of the sublimation process have been calculated at an average temperature ( = 132.8 ± 1.8 kJ/mol, = 226.1 ± 4.6 J/(K mol)) and at 298.15 K ( = 143.9 ± 2.6 kJ/mol, = 256.5 ± 6.4 J/(K mol)). The compounds studied can be used as precursors in chemical vapor deposition, and the set of obtained thermodynamic data can be used to select the optimal deposition conditions.
Keywords
β-дикетонат рентгеноструктурный анализ давление насыщенного пара энтальпия и энтропия сублимации и плавления
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
13

References

  1. 1. Игуменов И.К., Чуманенко Ю.В., Земсков С.В. Проблемы химии и применения β-дикетонатов металлов / Под ред. Спицына В.И. М.: Наука, 1982. С. 100.
  2. 2. Громилов С.А. Байдина И.А. // Журн. структур. химии. 2004. Т. 45. № 6. С. 1076.
  3. 3. Moshier R.W., Sievers R.E. Gas Chromotography of Metal Chelates: International series of monographs in analytical chemistry. Pergamon Press: Oxford, 1967.
  4. 4. Жаркова Г.И., Стабников П.А., Сысоев С.А. и др. // Журн. структур. химии. 2005. Т. 46. № 2. С. 328.
  5. 5. Варнек В.А., Игуменов И.К., Стабников П.А. и др. // Журн. структур. химии. 2001. Т. 42. № 5. С. 1024.
  6. 6. Igumenov I.K., Basova T.V., Belosludov V.R. Application of Thermodynamics to Biological and Materials Science / Ed. Tadashi M. London: InTech, 2011. P. 521.
  7. 7. Stabnikov P.A., Alferova N.I., Korolkov I.V. et al. // J. Struct. Chem. 2020. V. 61. № 10. P. 1615. https://doi.org/10.1134/S0022476620100145
  8. 8. Robertson I., Truter M.R. // Inorg. Phys. Theor. 1967. P. 309.
  9. 9. Шапкин Н.П., Алехина О.Г., Реутов В.А. и др. // Журн. общ. химии. 1992. Т. 62. № 3. С. 505.
  10. 10. Abrahams B.F., Hoskins B.F., McFadyen D.W. et al. // Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 1998. V. 54. № 12. P. 1807. https://doi.org/10.1107/S0108270198008592
  11. 11. Döhring A., Goddard R., Jolly P.W. et al. // Inorg. Chem. 1997. V. 36. № 2. P. 177. https://doi.org/10.1021/ic960441c
  12. 12. Berg M.A.G., Ritchie M.K., Merola J.S. // Polyhedron. 2012. V. 38. № 1. P. 126. https://doi.org/10.1016/j.poly.2012.02.024
  13. 13. Ribeiro da Silva M.A.V., Ferrao M.L.C.C.H., Silva R.M.G.E. da // J. Chem. Thermodyn. 1992. V. 24. P. 1293.
  14. 14. Zherikova K.V., Zelenina L.N., Chusova T.P. et al. // Phys. Procedia. 2013. V. 46. P. 200. https://doi.org/10.1016/j.phpro.2013.07.068
  15. 15. Zelenina L.N., Zherikova K.V., Chusova T.P. et al. // Thermochim. Acta. 2020. V. 689. P. 178639. https://doi.org/10.1016/j.tca.2020.178639
  16. 16. Zherikova K.V., Verevkin S.P. // RSC Adv. 2020. V. 10. № 63. P. 38158. https://doi.org/10.1039/d0ra06880b
  17. 17. Kong P., Pu Y., Ma P. et al. // Thin Solid Films. 2020. V. 714. P. 1. https://doi.org/10.1016/j.tsf.2020.138357
  18. 18. De Rouffignac P., Yousef A.P., Kim K.H. et al. // Electrochem. Solid-State Lett. 2006. V. 9. № 6. P. 45. https://doi.org/10.1149/1.2191131
  19. 19. Smirnova T.P., Yakovkina L.V., Borisov V.O. et al. // J. Struct. Chem. 2017. V. 58. № 8. P. 1573. https://doi.org/10.1134/S0022476617080145
  20. 20. Stognii A.I., Serokurova A.I., Smirnova M.N. et al. // Russ. J. Inorg. Chem. 2021. V. 66. № 12. P. 1822. https://doi.org/10.1134/S0036023621120196
  21. 21. Bumagin N.A. // Russ. J. Gen. Chem. 2022. V. 92. № 5. P. 832. https://doi.org/10.1134/S1070363222050127
  22. 22. Bruker AXS Inc. (2004). APEX2 (Version 1.08), SAINT (Version 7.03), and SADABS (Version 2.11). Bruker Advanced X-ray Solutions, Madison, Wisconsin, USA.
  23. 23. Sheldrick G.M. // Acta Crystallogr. 2015. V. C71. P. 3.
  24. 24. Zherikova K.V., Makarenko A.M., Karakovskaya K.I. et al. // Russ. J. Gen. Chem. V. 91. № 10. P. 1990. https://doi.org/10.1134/S1070363221100108
  25. 25. Anderson T.J., Neuman M.A., Melson G.A. // Inorg. Chem. 1973. V. 12. № 4. P. 927. https://doi.org/10.1021/ic50122a046
  26. 26. Diaz-Acosta I., Baker J., Cordes W. et al. // J. Phys. Chem. A. 2001. V. 105. № 1. P. 238. https://doi.org/10.1021/jp0028599
  27. 27. Beech G., Lintonbon R.M. // Thermochim. Acta. 1971. V. 3. P. 97.
  28. 28. Sabolović J., Mrak Ž., Koštrun S. et al. // Inorg. Chem. 2004. V. 43. № 26. P. 8479. https://doi.org/10.1021/ic048900u
  29. 29. Kulikov D., Verevkin S.P., Heintz A. // J. Chem. Eng. Data. 2001. V. 46. № 6. P. 1593. https://doi.org/10.1021/je010187p
  30. 30. Kulikov D., Verevkin S.P., Heintz A. // Fluid Phase Equilib. 2001. V. 192. № 1–2. P. 187. https://doi.org/10.1016/S0378-3812 (01)00633-1
  31. 31. Zherikova K.V., Verevkin S.P. // Fluid Phase Equilib. 2018. V. 472. P. 196. https://doi.org/10.1016/j.fluid.2018.05.004
  32. 32. Verevkin S.P., Emel’yanenko V.N., Zherikova K.V. et al. // Chem. Phys. Lett. 2020. V. 739. P. 136911. https://doi.org/10.1016/j.cplett.2019.136911
  33. 33. Melia T.P., Merrifield R. // J. Inorg. Nucl. Chem. 1970. V. 32. P. 2573.
  34. 34. Verevkin S.P., Sazonova A.Y., Emel’yanenko V.N. et al. // J. Chem. Eng. Data. 2015. V. 60. P. 89. https://doi.org/doi.org/10.1021/je500784s
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library