- PII
- 10.31857/S0044457X22601444-1
- DOI
- 10.31857/S0044457X22601444
- Publication type
- Status
- Published
- Authors
- Volume/ Edition
- Volume 68 / Issue number 2
- Pages
- 221-228
- Abstract
- Complexes Sc(Meacac)3 and Fe(Meacac)3 (Meacac is 3-methyl-2,4-pentanedionate anion) have been synthesized, and their crystal structures have been first determined by X-ray diffraction. The volatility and thermal stability of the obtained compounds have been studied. The temperature, enthalpy, and entropy of melting of the complexes have been determined by differential scanning calorimetry. The flow method has been used to obtain the temperature dependence of the saturated vapor pressure of Sc(Meacac)3 in the range 414–472 K, from which the thermodynamic characteristics of the sublimation process have been calculated at an average temperature ( = 132.8 ± 1.8 kJ/mol, = 226.1 ± 4.6 J/(K mol)) and at 298.15 K ( = 143.9 ± 2.6 kJ/mol, = 256.5 ± 6.4 J/(K mol)). The compounds studied can be used as precursors in chemical vapor deposition, and the set of obtained thermodynamic data can be used to select the optimal deposition conditions.
- Keywords
- β-дикетонат рентгеноструктурный анализ давление насыщенного пара энтальпия и энтропия сублимации и плавления
- Date of publication
- 17.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 13
References
- 1. Игуменов И.К., Чуманенко Ю.В., Земсков С.В. Проблемы химии и применения β-дикетонатов металлов / Под ред. Спицына В.И. М.: Наука, 1982. С. 100.
- 2. Громилов С.А. Байдина И.А. // Журн. структур. химии. 2004. Т. 45. № 6. С. 1076.
- 3. Moshier R.W., Sievers R.E. Gas Chromotography of Metal Chelates: International series of monographs in analytical chemistry. Pergamon Press: Oxford, 1967.
- 4. Жаркова Г.И., Стабников П.А., Сысоев С.А. и др. // Журн. структур. химии. 2005. Т. 46. № 2. С. 328.
- 5. Варнек В.А., Игуменов И.К., Стабников П.А. и др. // Журн. структур. химии. 2001. Т. 42. № 5. С. 1024.
- 6. Igumenov I.K., Basova T.V., Belosludov V.R. Application of Thermodynamics to Biological and Materials Science / Ed. Tadashi M. London: InTech, 2011. P. 521.
- 7. Stabnikov P.A., Alferova N.I., Korolkov I.V. et al. // J. Struct. Chem. 2020. V. 61. № 10. P. 1615. https://doi.org/10.1134/S0022476620100145
- 8. Robertson I., Truter M.R. // Inorg. Phys. Theor. 1967. P. 309.
- 9. Шапкин Н.П., Алехина О.Г., Реутов В.А. и др. // Журн. общ. химии. 1992. Т. 62. № 3. С. 505.
- 10. Abrahams B.F., Hoskins B.F., McFadyen D.W. et al. // Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 1998. V. 54. № 12. P. 1807. https://doi.org/10.1107/S0108270198008592
- 11. Döhring A., Goddard R., Jolly P.W. et al. // Inorg. Chem. 1997. V. 36. № 2. P. 177. https://doi.org/10.1021/ic960441c
- 12. Berg M.A.G., Ritchie M.K., Merola J.S. // Polyhedron. 2012. V. 38. № 1. P. 126. https://doi.org/10.1016/j.poly.2012.02.024
- 13. Ribeiro da Silva M.A.V., Ferrao M.L.C.C.H., Silva R.M.G.E. da // J. Chem. Thermodyn. 1992. V. 24. P. 1293.
- 14. Zherikova K.V., Zelenina L.N., Chusova T.P. et al. // Phys. Procedia. 2013. V. 46. P. 200. https://doi.org/10.1016/j.phpro.2013.07.068
- 15. Zelenina L.N., Zherikova K.V., Chusova T.P. et al. // Thermochim. Acta. 2020. V. 689. P. 178639. https://doi.org/10.1016/j.tca.2020.178639
- 16. Zherikova K.V., Verevkin S.P. // RSC Adv. 2020. V. 10. № 63. P. 38158. https://doi.org/10.1039/d0ra06880b
- 17. Kong P., Pu Y., Ma P. et al. // Thin Solid Films. 2020. V. 714. P. 1. https://doi.org/10.1016/j.tsf.2020.138357
- 18. De Rouffignac P., Yousef A.P., Kim K.H. et al. // Electrochem. Solid-State Lett. 2006. V. 9. № 6. P. 45. https://doi.org/10.1149/1.2191131
- 19. Smirnova T.P., Yakovkina L.V., Borisov V.O. et al. // J. Struct. Chem. 2017. V. 58. № 8. P. 1573. https://doi.org/10.1134/S0022476617080145
- 20. Stognii A.I., Serokurova A.I., Smirnova M.N. et al. // Russ. J. Inorg. Chem. 2021. V. 66. № 12. P. 1822. https://doi.org/10.1134/S0036023621120196
- 21. Bumagin N.A. // Russ. J. Gen. Chem. 2022. V. 92. № 5. P. 832. https://doi.org/10.1134/S1070363222050127
- 22. Bruker AXS Inc. (2004). APEX2 (Version 1.08), SAINT (Version 7.03), and SADABS (Version 2.11). Bruker Advanced X-ray Solutions, Madison, Wisconsin, USA.
- 23. Sheldrick G.M. // Acta Crystallogr. 2015. V. C71. P. 3.
- 24. Zherikova K.V., Makarenko A.M., Karakovskaya K.I. et al. // Russ. J. Gen. Chem. V. 91. № 10. P. 1990. https://doi.org/10.1134/S1070363221100108
- 25. Anderson T.J., Neuman M.A., Melson G.A. // Inorg. Chem. 1973. V. 12. № 4. P. 927. https://doi.org/10.1021/ic50122a046
- 26. Diaz-Acosta I., Baker J., Cordes W. et al. // J. Phys. Chem. A. 2001. V. 105. № 1. P. 238. https://doi.org/10.1021/jp0028599
- 27. Beech G., Lintonbon R.M. // Thermochim. Acta. 1971. V. 3. P. 97.
- 28. Sabolović J., Mrak Ž., Koštrun S. et al. // Inorg. Chem. 2004. V. 43. № 26. P. 8479. https://doi.org/10.1021/ic048900u
- 29. Kulikov D., Verevkin S.P., Heintz A. // J. Chem. Eng. Data. 2001. V. 46. № 6. P. 1593. https://doi.org/10.1021/je010187p
- 30. Kulikov D., Verevkin S.P., Heintz A. // Fluid Phase Equilib. 2001. V. 192. № 1–2. P. 187. https://doi.org/10.1016/S0378-3812 (01)00633-1
- 31. Zherikova K.V., Verevkin S.P. // Fluid Phase Equilib. 2018. V. 472. P. 196. https://doi.org/10.1016/j.fluid.2018.05.004
- 32. Verevkin S.P., Emel’yanenko V.N., Zherikova K.V. et al. // Chem. Phys. Lett. 2020. V. 739. P. 136911. https://doi.org/10.1016/j.cplett.2019.136911
- 33. Melia T.P., Merrifield R. // J. Inorg. Nucl. Chem. 1970. V. 32. P. 2573.
- 34. Verevkin S.P., Sazonova A.Y., Emel’yanenko V.N. et al. // J. Chem. Eng. Data. 2015. V. 60. P. 89. https://doi.org/doi.org/10.1021/je500784s