- PII
- 10.31857/S0044457X22601377-1
- DOI
- 10.31857/S0044457X22601377
- Publication type
- Status
- Published
- Authors
- Volume/ Edition
- Volume 68 / Issue number 3
- Pages
- 349-356
- Abstract
- Complex formation of aqua palladium(II) ions with glycine (Gly), β‑alanine (β-Ala), and taurine (Tau) in aqueous solution was studied by spectrophotometric titration at I = 1.0 mol/L (HClO4 + NaClO4) and T = 25 ± 1°C. A monoligand complex appeared at pH 0 in the H‒Pd–Gly system under the conditions of our experiment; mono- and biscomplexes were formed at pH 1. In the H‒Pd‒β-Ala system, a monoligand complex was formed at pH 1 and mono- and biscomplexes were formed at pH 2. In the H‒Pd‒Tau system, a monoligand complex was formed at pH 1 and 2. Molar absorption coefficients were calculated: the peak absorption occurs at λ = 370 nm and ε = 203 L/(mol cm) for the monoligand glycinate complex [PdGly(H2O)2]+; at λ = 325 nm and ε = 274 L/(mol cm) for the biscomplex [PdGly2]0; at λ = 365 nm and ε = 342 and 297 L/(mol cm) for the β‑alaninate [Pdβ‑Ala(H2O)2]+ and taurinate [PdTau(H2O)2]+ monoligand complexes, respectively; and at λ = 330 nm and ε = 549 L/(mol cm) for the β‑alaninate biscomplex [Pdβ‑Ala2]0. Logarithmic concentration formation constants were calculated for glycinate (log β1 = 15.03 ± 0.07, and log β2 = 28.97 ± 0.28), β-alaninate (log β1 = 13.94 ± 0.05, and log β2 = 25.24 ± 0.06), and taurinate (log β1 = 9.74 ± 0.08) palladium(II) complexes.
- Keywords
- глицин β-аланин таурин спектрофотометрия
- Date of publication
- 17.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 12
References
- 1. Salishcheva O.V., Prosekov A.Yu., Moldagulova N.E. et al. // Proceedings of Universities. Appl. Chem. Biotechnol. 2022. V. 11. № 4. P. 651. https://doi.org/10.21285/2227-2925-2021-11-4-651-662
- 2. Batyrenko A.A., Mikolaichuk O.V., Ovsepyan G.K. et al. // Russ. J Gen. Chem. 2021. V. 91. № 6. P. 1260. https://doi.org/10.1134/S1070363221060426
- 3. Denisov M.S., Dmitriev M.V., Eroshenko D.V. et al. // Russ. J. Inorg. Chem. 2019. V. 64. № 1. P. 56. https://doi.org/10.1134/S0036023619010054
- 4. Efimenko I.A., Dobrynina N.A., Shishilov O.N. et al. // Russ. J. Coord. Chem. 2012. V. 38. № 4. P. 233. https://doi.org/10.1134/S1070328412020029
- 5. Kiss T., Sovago I., Gergely A. // Pure Appl. Chem. 1991. V. 63. № 4. P. 597. https://doi.org/10.1351/pac199163040597
- 6. Sovago I., Kiss T., Gergely A. // Pure Appl. Chem. 1993. V. 65. № 5. P. 1029. https://doi.org/10.1351/pac199365051029
- 7. Бек М., Надьпал И. // Исследование комплексообразования новейшими методами. М.: Мир, 1989.
- 8. Isaeva E.I., Gorbunova V.V., Nazarova A.M. // Russ. J. Gen. Chem. 2020. V. 90. № 12. P. 2296. https://doi.org/10.1134/S1070363220120129
- 9. Appleton T.G., Bailey A.J., Bedgood D.R. et al. // Inorg. Chem. 1994. V. 33. № 2. P. 217. https://doi.org/10.1021/ic00080a008
- 10. Nakayama K., Komorita T., Shimura Y. // Bull. Chem. Soc. Jpn. 1984. V. 57. № 10. P. 2930. https://doi.org/10.1246/bcsj.57.2930
- 11. Bondarenko V.S., Gabuda S.P., Mal’chikov G.D. et al. // J. Struct. Chem. 1977. V. 17. № 3. P. 412. https://doi.org/10.1007/BF00746658
- 12. Kozachkova A.N., Tsaryk N.V., Dudko A.V. et al. // Russ. J. Phys. Chem. A. 2012. V. 86. № 10. P. 1570. https://doi.org/10.1134/S0036024412100123
- 13. Shoukry M.M., Khairy E.M., Saeed A. // J. Coord. Chem. 1988. V. 17. № 4. P. 305. https://doi.org/10.1080/00958978808073921
- 14. Anderegg G., Malik S.C. // Helv. Chim. Acta. 1976. V. 59. № 5. P. 1498. https://doi.org/10.1002/hlca.19760590511
- 15. Kollmann J., Hoyer E. // J. Praktische Chem. 1974. V. 316. № 1. P. 119. https://doi.org/10.1002/prac.19743160116
- 16. Farooq O., Ahmad N., Malik A.U. // J. Electroanal. Chem. Interfacial Electrochem. 1973. V. 48. № 3. P. 475. https://doi.org/10.1016/S0022-0728 (73)80379-1
- 17. Solov’ev V.P., Baulin V.E., Strakhova N.N. et al. // J. Chem. Soc. 1998. V. 2. № 6. P. 1489. https://doi.org/10.1039/a708245b
- 18. NIST Critically Selected Stability Constants of Metal Complexes, Version 8.0, 2004
- 19. Wallace R.M., Katz S.M. // J. Phys. Chem. 1964. V. 68. № 12. P. 3890. https://doi.org/10.1021/j100794a511
- 20. Хартли Ф., Бёргес К., Олкок Р. // Равновесия в растворах. M.: Мир, 1980.
- 21. Anderegg G., Wanner H. // Inorg. Chim. Acta. 1986. V. 113. № 2. P. 101. https://doi.org/10.1016/S0020-1693 (00)82229-X
- 22. Elding L.I. // Inorg. Chim. Acta. 1972. V. 6. P. 647. https://doi.org/10.1016/S0020-1693 (00)91874-7
- 23. Rasmussen L., Jørgensen Chr.K., Sjövall J. et al. // Acta Chem. Scand. 1968. V. 22. P. 2313. https://doi.org/10.3891/acta.chem.scand.22-2313
- 24. Shi T., Elding L.I. // Inorg. Chem. 1996. V. 35. № 3. P. 735. https://doi.org/10.1021/ic950935u