RAS Chemistry & Material ScienceЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

Ba2Gd2 – xSmxGe4O13: Luminescence Properties, Prospects for Non-Contact Temperature Sensing Applications and Light-Emitting Diodes

PII
10.31857/S0044457X22601353-1
DOI
10.31857/S0044457X22601353
Publication type
Status
Published
Authors
Volume/ Edition
Volume 68 / Issue number 3
Pages
383-392
Abstract
Tetragermanates Ba2Gd2 – xSmxGe4O13 (x = 0.025–0.8) have been synthesized by the solid-phase method. Solid solutions crystallize in the monoclinic crystal system (space group С2/с, Z = 4) and are members of a small family of inorganic compounds containing [Ge4O13]10– anions. The photoluminescence properties of germanates upon excitation by radiation with λex = 275 nm have been studied. The spectra of the compounds show a broad band with a maximum at 313 nm and a set of lines in the range of 525–730 nm, corresponding to intraconfigurational 4f–4f transitions in Gd3+ and Sm3+ ions. It has been found that germanate Ba2Gd1.95Sm0.05Ge4O13 has the maximum luminescence intensity. For this sample, the color characteristics and the temperature dependences of the intensity ratios of the main luminescence bands upon heating to 498 K have been studied. It has been concluded that Ba2Gd1.95Sm0.05Ge4O13 can be used as a material for non-contact temperature sensing and light emitting diodes.
Keywords
люминесценция германат самарий
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
12

References

  1. 1. Brites C.D.S., Millán A., Carlos L.D. // Handb. Phys. Chem. Rare Earths. 2016. V. 49. P. 339. https://doi.org/10.1016/bs.hpcre.2016.03.005
  2. 2. Brites C.D.S., Lima P.P., Silva et al. // Nanoscale. 2012. V. 4. P. 4799. https://doi.org/10.1039/C2NR30663H
  3. 3. Rai V.K., Rai S.B. // Appl. Phys. B. 2007. V. 87. P. 323. https://doi.org/10.1007/s00340-007-2592-z
  4. 4. Dramićanin M. Chapter 6 – Lanthanide and Transition Metal Ion Doped Materials for Luminescence Temperature Sensing in Luminescence Thermometry: Methods, Materials, and Applications, Woodhead Publishing Series in Electronic and Optical Materials. 2018. P. 113–157.
  5. 5. Zhu K., Zhou H., Qiu J. et al. // J. Alloys Compd. 2021. V. 890. P. 161844. https://doi.org/10.1016/j.jallcom.2021.161844
  6. 6. Nikolić M.G., Jovanović D.J., Đorđević V. et al. // Phys. Scr. 2012. P. 014063. https://doi.org/10.1088/0031-8949/2012/T149/014063
  7. 7. Suta M., Mejerink A. // Adv. Theory Simul. 2020. V. 3. P. 2000176. https://doi.org/10.1002/adts.202000176
  8. 8. Li J., Yan J., Wen D. et al. // J. Mater. Chem. C. 2016. V. 4. P. 8611. https://doi.org/10.1039/C6TC02695H
  9. 9. Ma Y., Tang S., Ji C. et al. // J. Lumin. 2022. V. 242. P. 118530. https://doi.org/10.1016/j.jlumin.2021.118530
  10. 10. Ji C., Huang Z., Tian X. et al. // J. Alloys Compd. 2020. V. 825. P. 154176. https://doi.org/10.1016/j.jallcom.2020.154176
  11. 11. Ji C., Huang Z., Tian X. et al. // J. Lumin. 2021. V. 232. P. 117775. https://doi.org/10.1016/j.jlumin.2020.117775
  12. 12. Singh V., Lakshminarayana G., Singh N. // Optik. 2020. V. 211. P. 164272. https://doi.org/10.1016/j.ijleo.2020.164272
  13. 13. Liu H., Guo S., Hao Y. et al. // J. Lumin. 2012. V. 132. № 11. P. 2908. https://doi.org/10.1016/j.jlumin.2012.06.006
  14. 14. Mei L., Liu H., Liao L. et al. // Scientif. Rep. 2017. V. 7. P. 15171. https://doi.org/10.1038/s41598-017-15595-z
  15. 15. Helode S.J., Kadam A.R., Dhoble S.J. // Chem. Data Collect. 2020. V. 40. P. 100881. https://doi.org/10.1016/j.cdc.2022.100881
  16. 16. Денисова Л.Т., Молокеев М.С., Каргин Ю.Ф. и др. // Журн. неорган. химии. 2021. Т. 66. № 12. С. 1700. https://doi.org/10.1134/S0036023621120020
  17. 17. Горбунов Ю.А., Максимов Б.А., Белов Н.В. // Докл. АН СССР. 1973. Т. 211. С. 591.
  18. 18. Masuda T., Chakoumakos B.C., Nygren C.L. et al. // J. Solid State Chem. 2003. V. 176. P. 175. https://doi.org/10.1016/S0022-4596 (03)00387-6
  19. 19. Redhammer G.J., Roth G. // J. Solid State Chem. 2004. V. 177. P. 2714. https://doi.org/10.1016/j.jssc.2004.04.016
  20. 20. Sanjeewa L.D., McGuire M.A., McMillen C.D. et al. // Chem. Mater. 2017. V. 29. P. 1404. https://doi.org/10.1021/acs.chemmater.6b05320
  21. 21. Ananias D., Paz F.A.A., Carlos L.D. et al. // Eur. J. Inorg. Chem. 2018. V. 2018. № 20. P. 2444. https://doi.org/10.1002/ejic.201800153
  22. 22. Tyutyunnik A.P., Chufarov A.Yu., Surat L.L. et al. // Mendeleev Commun. 2018. V. 28. P. 661. https://doi.org/10.1016/j.mencom.2018.11.035
  23. 23. Lipina O.A., Surat L.L., Chufarov A.Y. et al. // Dalton Trans. 2021. V. 50. P. 10935. https://doi.org/10.1039/d1dt01780b
  24. 24. Toby B.H. // J. Appl. Crystallogr. B. 2001. V. 34. P. 210. https://doi.org/10.1107/S0021889801002242
  25. 25. Larson A.C., Von Dreele R.B. General Structure Analysis System (GSAS), Los Alamos National Laboratory Report LAUR 86-748, Los Alamos, NM, 2004.
  26. 26. Shannon R.D. // Acta Crystallogr., Sect. A. 1976. V. 32. P. 751. https://doi.org/10.1107/S0567739476001551
  27. 27. Ullah I., Shah S.K., Rooh G. et al. // Opt. Mater. 2021. V. 111. P. 110657. https://doi.org/10.1016/j.optmat.2020.110657
  28. 28. Baklanova Y.V., Maksimova L.G., Lipina O.A. et al. // J. Lumin. 2020. V. 224. P. 117315. https://doi.org/10.1016/j.jlumin.2020.117315
  29. 29. Wantana N., Kaewjaeng S., Kothan S. et al. // J. Lumin. 2017. V. 181. P. 382. https://doi.org/10.1016/j.jlumin.2016.09.050
  30. 30. He J., Zhang S., Zhou J. et al. // Opt. Mater. 2015. V. 39. P. 81. https://doi.org/10.1016/j.optmat.2014.11.002
  31. 31. Li Y., Dvořák M., Nesterenko P.N. et al. // Sens. Actuators B. 2018. V. 255. P. 1238. https://doi.org/10.1016/j.snb.2017.08.085
  32. 32. Kelly K.L. // J. Opt. Soc. Am. 1943. V. 33. P. 627. https://doi.org/10.1364/JOSA.33.000627
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library