RAS Chemistry & Material ScienceЖурнал неорганической химии Russian Journal of Inorganic Chemistry

  • ISSN (Print) 0044-457X
  • ISSN (Online) 3034-560X

Synthesis and Thermal Stability of Manganese(III) Acetylacetonate

PII
10.31857/S0044457X22600633-1
DOI
10.31857/S0044457X22600633
Publication type
Status
Published
Authors
Volume/ Edition
Volume 68 / Issue number 1
Pages
56-66
Abstract
The dependence of the stability of Mn(C5H7O2)3 modifications on the properties of the solvent chosen for recrystallization is considered. Low-polarity solvents with a low dielectric permittivity enhance intermolecular interactions, which leads to the formation of the β-Mn(C5H7O2)3 modification during the synthesis of Mn(C5H7O2)3 from chloroform solutions. The use of mixtures of chloroform with petroleum ether makes it possible to control supersaturation, the rate of formation, and growth of phase nuclei due to the evaporation of chloroform under isothermal conditions. The use of polar solvents for recrystallization favors the formation of γ-Mn(C5H7O2)3. The composition of the thermal decomposition products of β‑Mn(C5H7O2)3 in a dry inert atmosphere has been determined by X-ray powder diffraction, IR spectroscopy, thermogravimetric and mass spectral analysis, and differential scanning calorimetry. In the temperature range 140–240°C, β-Mn(C5H7O2)3 melts to form Mn(C5H7O2)2. At temperatures of 500–550°С, Mn(C5H7O2)2 decomposes to a mixture of MnO, Mn3O4, Mn2O3, and carbon.
Keywords
ацетилацетонат марганца(III) термолиз разложение термический анализ кристаллическая структура ИК-спектроскопия термогравиметрия масс-спектральный анализ
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
11

References

  1. 1. Snider B.B. // Encyclopedia of Reagents for Organic Synthesis. John Wiley & Sons Ltd, 2001. https://doi.org/ /10.1002/047084289X.rm022
  2. 2. Ban H.T., Kase T., Murata M. // J. Polym. Sci. A1. 2001. V. 39. № 21. P. 3733. https://doi.org/10.1002/pola.10021
  3. 3. Gorkum R., Bouwman E., Reedijk J. // Inorg. Chem. 2004. V. 43. № 8. P. 2456. https://doi.org/10.1021/ic0354217
  4. 4. Sleightholme A.E.S., Shinkle A.A., Liu Q. et al. // J. Power Sources. 2011. V. 196. № 13. P. 5742. https://doi.org/10.1016/j.jpowsour.2011.02.020
  5. 5. Park Y.J., Kim J.G., Kim M.K. et al. // Solid State Ionics. 2000. V. 130. № 3. P. 203. https://doi.org/https://doi.org/10.1016/S0167-2738 (00)-00551-8
  6. 6. Fackler J.P., Avdeef A. // Inorg. Chem. 1974. V. 13. № 8. P. 1864. https://doi.org/10.1021/ic50138a016
  7. 7. Stults B.R., Marianelli R.S., Day V.W. // Inorg. Chem. 1979. V. 18. № 7. P. 1853. https://doi.org/10.1021/ic50197a028
  8. 8. Geremia S., Demitri N. // J. Chem. Educ. 2005. V. 82. № 3. P. 460. https://doi.org/10.1021/ed082p460
  9. 9. Arslan E., Lalancette R.A., Bernal I. // Struct. Chem. 2017. V. 28. № 1. P. 201. https://doi.org/10.1007/s11224-016-0864-0
  10. 10. Bhattacharjee M.N., Chaudhuri M.K., Khathing D.T. // J. Chem. Soc., Dalton Trans. 1982. № 3. P. 669. https://doi.org/10.1039/DT9820000669
  11. 11. Kunstle G. Patent FRG. №2420775 A1. 1974
  12. 12. Charles R.G., Bryant B.E. // Inorg. Synth. 1963. P. 183. https://doi.org/10.1002/9780470132388.ch49
  13. 13. Cartledge G.H. Patent USA № 2556316. 1951.
  14. 14. Linke W., Zirker G. Pat FRG № 1039056B. 1957.
  15. 15. Gach F. // C.R. Acad. Sci. Ser. IIc: Chim. 1900. P. 98.
  16. 16. Грачев В.И., Носков С.В., Филатов И.Ю. Пат. РФ № 2277529C1 // Бюлл. 16 от 10.06.2006.
  17. 17. Matthews J.C., Wood L.L. Pat. USA № 474464. 1969.
  18. 18. Siddiqi M.A., Siddiqui R.A., Atakan B. // Surf Coat. Tech. 2007. V. 201. № 22. P. 9055. https://doi.org/10.1016/j.surfcoat.2007.04.036
  19. 19. McNeill I.C., Liggat J.J. // Polym. Degrad. Stabil. 1992. V. 37. № 1. P. 25. https://doi.org/10.1016/0141-3910 (92)90088-M
  20. 20. Babich I.V., Davydenko L.A., Sharanda L.F. et al. // Thermochim. Acta. 2007. V. 456. № 2. P. 145. https://doi.org/https://doi.org/10.1016/j.tca.2007.02.010
  21. 21. Reichert C., Bancroft G.M., Westmore J.B. // Can. J. Chem. 1970. V. 48. № 9. P. 1362. https://doi.org/10.1139/v70-225
  22. 22. Macdonald C.G., Shannon J.S. // Aust. J. Chem. 1966. V. 19. № 9. P. 1545. https://doi.org/10.1071/CH9661545
  23. 23. Новый справочник химика и технолога / Под ред. Москвина А.В. СПб., 2006. 456 с.
  24. 24. Zlomanov V.P., Eshmakov R.S., Prolubshchikov I.V. // Condensed Matter and Interphases. 2022. V. 24. № 1. P. 29. [Зломанов В.П., Эшмаков Р.С., Пролубщи-ков И.В. // Конденсированные среды и межфазные границы. 2022. Т. 24. № 1. С. 29.] https://doi.org/10.17308/kcmf.2022.24/000
  25. 25. Тарасевич Б.Н. // ИК-спектры основных классов органических соединений. Справочные материалы. М., 2012. 55 с.
  26. 26. Diaz-Acosta I., Baker J., Hinton J.F. et al. // Spectrochim. Acta, Part A. 2003. V. 59. № 2. P. 363. https://doi.org/10.1016/S1386-1425 (02)00166-X
  27. 27. Lawson K.E. // Spectrochim. Acta. 1961. V. 17. № 3. P. 248. https://doi.org/10.1016/0371-1951 (61)80071-4
  28. 28. Pinchas S., Silver B.L., Laulicht I. // J. Chem. Phys. 1967. V. 46. № 4. P. 1506. https://doi.org/10.1063/1.1840881
  29. 29. Алиханян А.С., Малкерова И.П., Севастьянов В.Г. и др. // Высокочистые вещества. 1987. Т. 3. С. 112.
  30. 30. Semyannikov P.P., Igumenov I.K., Trubin S.V., Asanov I.P. // J. Phys. IV. France. 2001. V. 11. P. 995.
  31. 31. Jarosch D. // Miner. Petrol. 1987. V. 37. № 1. P. 15. https://doi.org/10.1007/BF01163155
  32. 32. Hase W. // Phys. Status Solidi B. 1963. V. 3. № 12. P. K446. https://doi.org//10.1002/pssb.19630031225
  33. 33. Jay A.H., Andrews K.W. // J. Iron Steel I. 1945. V. 152. № 2. P. 15.
  34. 34. Hassel O., Mark H. // Z. Phys. 1924. V. 25. № 1. P. 317.
  35. 35. Shibata S., Onuma S., Inoue H. // Inorg. Chem. 1985. V. 24. № 11. P. 1723. https://doi.org/10.1021/ic00205a028
  36. 36. Tran M. van, Ha A.T., Le P.M.L. // J. Nanomater. 2015. V. 16. № 1. https://doi.org/10.1155/2015/609273
  37. 37. Lemmon E.W., McLinden M.O., Friend D.G. et al. // National Institute of Standards and Technology. Gaithersburg, 2011.
  38. 38. Wu Z., Yu K., Huang Y. et al. // Chem. Cent. J. 2007. V. 1. № 1. P. 8. https://doi.org/10.1186/1752-153X-1-8
  39. 39. Sharrouf M., Awad R., Roumié M. et al. // Mater. Sci. Appl. 2015. V. 6. № 10. P. 850.
  40. 40. Zheng M., Zhang H., Gong X. et al. // Nanoscale Res. Lett. 2013. V. 8. № 1. P. 166. https://doi.org/10.1186/1556-276X-8-16
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library